Data Analysis and Machine Learning 4 (DAML)

Week 10: Deep Neural Networks

Elliot J. Crowley, 25th March 2024
THE UNIVERSITY of EDINBURGH

Recap

- We looked at Gaussian processes for regression

- We saw how changing the kernel affected the GP prior and posterior

Linear regression

- Given training data $\left\{\left(\mathbf{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}\left(\mathbf{x} \in \mathbb{R}^{D}, y \in \mathbb{R}\right)$ we can learn a model:
- $f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b$ s.t. $y^{(n)} \approx f\left(\mathbf{x}^{(n)}\right) \forall n$
- We want ϕ to map the data to a space where we can fit a hyperplane to it

(Binary) linear classifiers

- Given training data $\left\{\left(\mathbf{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}\left(\mathbf{x} \in \mathbb{R}^{D}, y \in\{0,1\}\right)$ we can learn a model:
- $f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b$ s.t. the hyperplane $f(\mathbf{x})=0$ separates the classes
- We want ϕ to map the data to a space where classes can be separated by a hyperplane

$$
\phi(\mathbf{x})=\left[\begin{array}{c}
\|\mathbf{x}\| \\
\tan ^{-1} \frac{x_{1}}{x_{0}}
\end{array}\right]
$$

Multi-dimensional output

- What if we want to perform multi-class classification or regress to a multidimensional output $f(\mathbf{x}) \in \mathbb{R}^{K}$?

$$
f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b \text { with } \mathbf{w} \in \mathbb{R}^{Z} \text { and } b \in \mathbb{R}
$$

becomes
$f(\mathbf{x})=\mathbf{W} \phi(\mathbf{x})+\mathbf{b}$ with with $\mathbf{W} \in \mathbb{R}^{Z \times K}$ and $\mathbf{b} \in \mathbb{R}^{K}$

- We will assume this is the default output from now on as it is more general

Feature learning

- Trying to design ϕ for a new problem can be tedious or impossible!
- What if we could learn ϕ directly from our training data?
- This is what deep learning entails. It's feature learning!
- We represent ϕ as a parameterised function $\phi_{\boldsymbol{\theta}_{f}}(\mathbf{x})$ and learn $\boldsymbol{\theta}_{f}$ jointly with \mathbf{W} and \mathbf{b}

Deep neural networks (DNNs)

- These are non-linear models (traditionally) consisting of \mathscr{L} functional layers

$$
f(\mathbf{x})=f^{(\mathscr{L})} \circ f^{(\mathscr{L}-1)} \circ \ldots \circ f^{(2)} \circ f^{(1)}(\mathbf{x})
$$

- The first \mathscr{L} - 1 layers form a learnable feature map $\phi(\mathbf{x})$. These are known as hidden layers

$$
\phi(\mathbf{x})=f^{(\mathscr{L}-1)} \ldots f^{(2)} f^{(1)}(\mathbf{x})
$$

- The last layer is (often) a linear transformation of the features

$$
f(\mathbf{x})=f^{(\mathscr{L})}(\phi(\mathbf{x}))=\mathbf{W}^{(\mathscr{L})} \phi(\mathbf{x})+\mathbf{b}^{(\mathscr{L})}
$$

The multilayer perceptron (MLP)

- A DNN takes the form

$$
f(\mathbf{x})=f^{(\mathscr{L})} \circ f^{(\mathscr{L}-1)} \circ \ldots \circ f^{(2)} \circ f^{(1)}(\mathbf{x})
$$

- An MLP is a network where each hidden layer output $\mathbf{h}^{(l)} \in \mathbb{R}^{H_{l}}$ is

$$
\mathbf{h}^{(l)}=f^{(l)}\left(\mathbf{h}^{(l-1)}\right)=g\left(\mathbf{W}^{(l)} \mathbf{h}^{(l-1)}+\mathbf{b}^{(l)}\right) \text { for } l=1,2, \ldots, \mathscr{L}-1
$$

- The layer input is the output of the previous layer $\mathbf{h}^{(l-1)} \in \mathbb{R}^{H_{l-1}}$
- This undergoes a linear transformation
- It then passes through a non-linear activation function g

WTHITITOMTOU

IIISIUSTA BUNGHOFMADHES

Activation functions

- These make our function non-linear. Without them an MLP collapses into a single linear transformation
- They are element-wise functions which means each element of the input vector is individually transformed

Two layer MLP

- For a 2 layer MLP with $\mathbf{x} \in \mathbb{R}^{D}$ and $f(\mathbf{x}) \in \mathbb{R}^{K}$ we have:

$$
\begin{aligned}
& \mathbf{h}^{(1)}=g\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right) \\
& f(\mathbf{x})=\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}
\end{aligned}
$$

- We can write the whole MLP as $f(\mathbf{x})=\mathbf{W}^{(2)} g\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right)+\mathbf{b}^{(2)}$

> The form of g and the dimensionality (or width) of the hidden layer are design decisions

2 layer MLP (with pre-specified weights) for XOR

- We are going to walk through a 2 layer MLP solving a classification problem where the classes aren't linearly separable
- We will use a ReLU activation and a hidden layer with a width of 2

Layer 1: Compute the pre-activation

$$
\mathbf{a}^{(1)}=\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)} \text { where } \mathbf{W}_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \text { and } \mathbf{b}_{1}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

Layer 1: Apply the non-linearity

$$
\mathbf{h}=g(\mathbf{a}) . \text { This is ReLU so }\left[\begin{array}{l}
h_{1}^{(1)} \\
h_{2}^{(1)}
\end{array}\right]=\left[\begin{array}{l}
\max \left(0, a_{1}^{(1)}\right) \\
\max \left(0, a_{2}^{(1)}\right)
\end{array}\right]
$$

Layer 2: Just a linear classifier

$f(\mathbf{x})=\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}$. Let's just draw $f(\mathbf{x})=0$

This gives us a non-linear decision boundary in the original space

3 layer MLP

The form of g and the width of the hidden layers are design decisions!

Credit to Oisin Mac Aodha for this example

- $\mathbf{h}^{(1)}=g\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right)$
- $\mathbf{h}^{(2)}=g\left(\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}\right)$

- $f(\mathbf{x})=\mathbf{W}^{(3)} \mathbf{h}^{(2)}+\mathbf{b}^{(3)}$

$$
\mathbf{W}^{(1)}=\left[\begin{array}{cc}
2.7 & 9.6 \\
13.6 & 11.7
\end{array}\right]
$$

$$
\mathbf{b}^{(1)}=\left[\begin{array}{c}
-7.4 \\
8.0
\end{array}\right]
$$

$\mathbf{h}^{(1)} \in \mathbb{R}^{2}$
$\mathbf{W}^{(2)}=\left[\begin{array}{cc}-7.9 & 11.0 \\ 7.9 & -9.9\end{array}\right]$
$\mathbf{b}^{(2)}=\left[\begin{array}{l}1.8 \\ 3.2\end{array}\right]$

$\mathbf{h}^{(2)} \in \mathbb{R}^{2}$

3 layer MLP

- $\mathbf{h}^{(1)}=g\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right)$
- $\mathbf{h}^{(2)}=g\left(\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}\right)$

$$
\mathbf{W}^{(1)}=\left[\begin{array}{cc}
2.7 & 9.6 \\
13.6 & 11.7
\end{array}\right]
$$

$$
\mathbf{W}^{(2)}=\left[\begin{array}{cc}
-7.9 & 11.0 \\
7.9 & -9.9
\end{array}\right]
$$

$$
\mathbf{b}^{(1)}=\left[\begin{array}{c}
-7.4 \\
8.0
\end{array}\right]
$$

$$
\mathbf{b}^{(2)}=\left[\begin{array}{l}
1.8 \\
3.2
\end{array}\right]
$$

Another 3 layer MLP

- $\mathbf{h}^{(1)}=g\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right)$
- $\mathbf{h}^{(2)}=g\left(\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}\right)$

- $f(\mathbf{x})=\mathbf{W}^{(3)} \mathbf{h}^{(2)}+\mathbf{b}^{(3)}$

$\mathbf{W}^{(1)} \in \mathbb{R}^{100 \times 2}$
$\mathbf{b}^{(1)} \in \mathbb{R}^{100}$

$$
\begin{aligned}
& \mathbf{W}^{(2)} \in \mathbb{R}^{2 \times 100} \\
& \mathbf{b}^{(2)} \in \mathbb{R}^{2}
\end{aligned}
$$

$\mathbf{h}^{(1)} \in \mathbb{R}^{100}$

Alternate view of a (2 layer) MLP

$$
\begin{aligned}
& \mathbf{h}^{(1)}=g\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right) \\
& \mathbf{h}^{(2)}=\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}
\end{aligned}
$$

- Sometimes you see MLPs drawn as graphs
- Here, the elements of $\mathbf{x} \in \mathbb{R}^{2}, \mathbf{h}^{(1)} \in \mathbb{R}^{3}, \mathbf{h}^{(2)} \in \mathbb{R}^{2}$ are represented by nodes
- Stuff is happening at the node inputs!
- It follows that $\mathbf{W}^{(1)} \in \mathbb{R}^{3 \times 2}, \mathbf{b}^{(1)} \in \mathbb{R}^{3}$
- And also that $\mathbf{W}^{(2)} \in \mathbb{R}^{2 \times 3}, \mathbf{b}^{(1)} \in \mathbb{R}^{2}$
- Sometimes these nodes are referred to as neurons

MLP: Layer 1

$\mathbf{h}^{(1)}=\left[\begin{array}{c}h_{1}^{(1)} \\ h_{2}^{(1)} \\ h_{3}^{(1)}\end{array}\right]=g\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right)=g\left(\left[\begin{array}{ll}w_{1,1}^{(1)} & w_{1,2}^{(1)} \\ w_{2,1}^{(1)} & w_{2,2}^{(1)} \\ w_{3,1}^{(1)} & w_{3,2}^{(1)}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{c}b_{1}^{(1)} \\ b_{2}^{(1)} \\ b_{3}^{(1)}\end{array}\right]\right)$

- Consider one of the neurons of $\mathbf{h}^{(1)}$
- It receives a weighted sum of the input neurons, to which a bias is added
- This pre-activation goes into an activation function g
- If we are using ReLU activations $g(z)=\max (0, z)$ then the pre-activation must be positive to pass through
- If this happens we say that the neuron has been activated

MLP: Layer 2

$\mathbf{h}^{(2)}=\left[\begin{array}{l}h_{1}^{(2)} \\ h_{2}^{(2)}\end{array}\right]=\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}=\left[\begin{array}{lll}w_{1,1}^{(2)} & w_{1,2}^{(2)} & w_{1,3}^{(2)} \\ w_{2,1}^{(2)} & w_{2,2}^{(2)} & w_{2,3}^{(2)}\end{array}\right]\left[\begin{array}{l}h_{1}^{(1)} \\ h_{2}^{(1)} \\ h_{3}^{(1)}\end{array}\right]+\left[\begin{array}{l}b_{1}^{(2)} \\ b_{2}^{(2)}\end{array}\right]$

- There is no activation function for the last layer in this example
- It's just a matrix multiplied by a vector plus another vector
- The previous layer was the same + a nonlinearity

Why MLPs?

- We've gone from learning your own features to a bunch of linear transformations + activation functions
- There is a practical reason: apart from the activation function it's all just matrix multiplies which computers are very good at
- There is also theory in the form of a universal approximation theorem
- This basically tells us an MLP with at least 2 layers (and appropriate g) can represent a wide range of functions when they have the right weights

Too good to be true?

Step 1: Use a 2 layer MLP to solve intelligence

Step 2: Use that to solve everything else

- The universal approximation theorem tells us an appropriate 2 layer MLP exists for lots of functions
- It doesn't tell us how wide the hidden layer should be or what weights to use!
- To make things worse, losses involving DNNs are generally non-convex :(
- (But this isn't actually that bad :)

Going deeper

- Empirically, deeper networks (those with more layers) tend to work better up to a certain point

- Now is good time to mention that deep learning is very empirical
- There are rules of thumb for e.g. the number of layers, layer widths
- However, often you need to try stuff out (or use existing models)

Learning the parameters of a 2 layer MLP

- For $\mathbf{x} \in \mathbb{R}^{D}$ we can push a dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$ through a 2 layer MLP using

$$
\begin{aligned}
& \mathbf{H}^{(1)}=g\left(\mathbf{X W}^{(1) \top}+\mathbf{1} \mathbf{b}^{(1) \top}\right) \\
& \mathbf{H}^{(2)}=\mathbf{H}^{(1)} \mathbf{W}^{(2) \top}+\mathbf{1} \mathbf{b}^{(2) \top}
\end{aligned}
$$

```
1\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ is a vector of ones}
```

- The learning process is very similar to that of linear models
- We pick an appropriate loss function L e.g. log loss for classification
- We then find the parameters that minimise the loss
- i.e. we solve minimise L where $\boldsymbol{\theta}=\left\{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \mathbf{W}^{(2)}, \mathbf{b}^{(2)}\right\}$

The chain rule

- We can solve minimise L for $\boldsymbol{\theta}=\left\{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \mathbf{W}^{(2)}, \mathbf{b}^{(2)}\right\}$ using GD $\boldsymbol{\theta}$
- This involves computing gradients $\nabla_{\boldsymbol{\theta}} L=\left\{\left(\frac{\partial L}{\partial \mathbf{W}^{(1)}}\right)^{\top},\left(\frac{\partial L}{\partial \mathbf{b}^{(1)}}\right)^{\top},\left(\frac{\partial L}{\partial \mathbf{W}^{(2)}}\right)^{\top},\left(\frac{\partial L}{\partial \mathbf{b}^{(2)}}\right)^{\top}\right\}$
- We can obtain expressions for these using the chain rule

$$
\frac{\partial L}{\partial \mathbf{W}^{(2)}}=\frac{\partial L}{\partial \mathbf{H}^{(2)}} \frac{\partial \mathbf{H}^{(2)}}{\partial \mathbf{W}^{(2)}}
$$

$$
\frac{\partial L}{\partial \mathbf{b}^{(2)}}=\frac{\partial L}{\partial \mathbf{H}^{(2)}} \frac{\partial \mathbf{H}^{(2)}}{\partial \mathbf{b}^{(2)}}
$$

$$
\frac{\partial L}{\partial \mathbf{W}^{(1)}}=\frac{\partial L}{\partial \mathbf{H}^{(2)}} \frac{\partial \mathbf{H}^{(2)}}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{W}^{(1)}} \quad \frac{\partial L}{\partial \mathbf{b}^{(1)}}=\frac{\partial L}{\partial \mathbf{H}^{(2)}} \frac{\partial \mathbf{H}^{(2)}}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{b}^{(1)}}
$$

[^0]
Automatic differentiation

- Computers can perform automatic differentiation (/auto-diff/autograd/magic)
- We don't need to work out closed form expressions for any derivatives!

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{W}^{(2)}}=\frac{\partial L}{\partial \mathbf{H}^{(2)}} \frac{\partial \mathbf{H}^{(2)}}{\partial \mathbf{W}^{(2)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(1)}}=\frac{\partial L}{\partial \mathbf{H}^{(2)}} \frac{\partial \mathbf{H}^{(2)}}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{W}^{(1)}} \\
& \frac{\partial L}{\partial \mathbf{b}^{(2)}}=\frac{\partial L}{\partial \mathbf{H}^{(2)}} \frac{\partial \mathbf{H}^{(2)}}{\partial \mathbf{b}^{(2)}} \\
& \frac{\partial L}{\partial \mathbf{b}^{(1)}}=\frac{\partial L}{\partial \mathbf{H}^{(2)}} \frac{\partial \mathbf{H}^{(2)}}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{b}^{(1)}}
\end{aligned}
$$

COOOOITOD
 Tuiduminishiming

Learning the parameters of an \mathscr{L} layer MLP

- For a dataset matrix \mathbf{X} our \mathscr{L} layer MLP is given by:

$$
\mathbf{H}^{(l)}=g^{(l)}\left(\mathbf{H}^{(l-1)} \mathbf{W}^{(l) \top}+\mathbf{1} \mathbf{b}^{(l) \top}\right) \text { for } l=1,2, \ldots, \mathscr{L}
$$

- $\mathbf{H}^{(0)}=\mathbf{X}$ and $g^{(l)}$ is a non-linear activation function e.g. ReLU for all layers but the last, which is typically the identity function
- The loss function takes in $\mathbf{H}^{(\mathscr{L})}$ (and some labels/targets) and we want to solve minimise L where $\boldsymbol{\theta}=\left\{\mathbf{W}^{(l)}, \mathbf{b}^{(l)}\right\}_{l=1}^{\mathscr{L}}$

More chain rule!

- To use GD we need to compute $\nabla_{\boldsymbol{\theta}} L=\left\{\left(\frac{\partial L}{\partial \mathbf{W}^{(l)}}\right)^{\top},\left(\frac{\partial L}{\partial \mathbf{b}^{(l)}}\right)^{\top}\right\}_{l=1}^{\mathscr{L}}$
- We start with the last layer and can use the chain rule to write

$$
\frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L})}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{A})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{W}^{(\mathscr{L})}} \quad \frac{\partial L}{\partial \mathbf{b}^{(\mathscr{L})}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{b}^{(\mathscr{L})}}
$$

- These expression are very similar so l'll just consider the \mathbf{W} gradients for now, knowing we can obtain the \mathbf{b} gradients in the same way

What do you notice?

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L})}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{W}^{(\mathscr{L})}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-1)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{W}^{(\mathscr{L}-1)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-2)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{W}^{(\mathscr{L}-2)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-3)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{W}^{(\mathscr{L}-3)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-4)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{H}^{(\mathscr{L}-4)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-4)}}{\partial \mathbf{W}^{\mathscr{L}-4)}}
\end{aligned}
$$

The same terms keep cropping up

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L})}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{W}^{(\mathscr{L})}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-1)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{W}^{(\mathscr{L}-1)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-2)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{W}^{(\mathscr{L}-2)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-3)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{W}^{(\mathscr{L}-3)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-4)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{H}^{(\mathscr{L}-4)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-4)}}{\partial \mathbf{W}^{(\mathscr{L}-4)}} \\
& \text { - We can write } \frac{\partial L}{\partial \mathbf{W}^{(l)}}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{W}^{(l)}} \text { where } \mathbf{G}^{(l)}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}} \frac{\partial \mathbf{H}^{(\mathscr{L})}}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \ldots \frac{\partial \mathbf{H}^{(l+1)}}{\partial \mathbf{H}^{(l)}}
\end{aligned}
$$

- We can iteratively compute $\mathbf{G}^{(l-1)}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{H}^{(l-1)}}$ so we don't have to repeatedly calculate the same terms

The backpropagation algorithm

- Goal: Obtain gradients $\nabla_{\boldsymbol{\theta}} L=\left\{\left(\frac{\partial L}{\partial \mathbf{W}^{(l)}}\right)^{\top},\left(\frac{\partial L}{\partial \mathbf{b}^{(l)}}\right)^{\top}\right\} \underset{l=1}{\mathscr{L}}$
- Compute $\mathbf{G}^{(\mathscr{L})}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L})}}$
- For l in $\mathscr{L}, \mathscr{L}-1, \ldots, 2,1$:

1. Compute $\frac{\partial L}{\partial \mathbf{W}^{(l)}}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{W}^{(l)}}$ and $\frac{\partial L}{\partial \mathbf{b}^{(l)}}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{b}^{(l)}}$
2. Compute $\mathbf{G}^{(l-1)}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{H}^{(l-1)}}$

SGD for neural network training

Storing lots of activations for a whole dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$ can be expensive. Because of this SGD is typically used for DNN training. The procedure is:

- Initialise DNN weights at random e.g. from a normal distribution
- For e in range(E):
- Split dataset into equal sized mini-batches $\left\{\mathbf{X}^{(b)}, \mathbf{y}^{(b)}\right\}_{b=1}^{B}$ at random
- For b in range(B$)$:

1. Compute $\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}, \mathbf{X}^{(b)}, \mathbf{y}^{(b)}\right)$ using backpropagation
2. Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}, \mathbf{X}^{(b)}, \mathbf{y}^{(b)}\right)$

Each outer loop across the whole dataset is known as an epoch

Other optimisers are available

- e.g. the Adam optimiser (pictured right)
- Almost all take the gradients from backprop and do something with them
- You don't need to know about any optimisers other than GD and SGD for this course

DNNs can overfit

- DNNs can represent lots of functions. They are high capacity models
- They are very susceptible to overfitting!
- Remember, we care about a model's ability to generalise to unseen data
- Regularisation is very important in DNNs!

Early stopping

- Fitting to the test set is not allowed
- We can however look at the validation set throughout training as a proxy
- The model starts to overfit once validation loss stops decreasing with train loss
- We can stop training at this point

This looks very similar to the last figure!
Over training models tend to underfit and then overfit to the training data

Weight decay

- Models that overfit tend to have large weights
- To mitigate this, we multiply all the weights by $1-\lambda$ whenever we perform an update step in e.g. SGD
- λ is the amount of weight decay as is usually very small e.g. 10^{-4}
- This is basically equivalent to having L2 regularisation in the loss function

Why deep learning of all things?

- A benchmark in computer vision is classification performance on ImageNet
- It is a 1000-way classification task with 1 million training images
- For the 2012 ImageNet challenge:
- The 2nd place model used handcrafted features and got 26.2\% top 5-error
- The 1st place model used a deep neural network and got 15.3\% top 5error (\& 36.7% top 1-error)

AlexNet (2012)

- The winning entry. It's split into two streams for 2 GPUs because of memory constraints (that no longer exist :))
- 5 convolutional layers, 3 max pools (interspersed), and 3 linear layers

ImageNet top-1 accuracies

Dataset

The transformer architecture (2017)

Vision transformers

https://upload.wikimedia.org/wikipedia/commons/thumb/0/04/ChatGPT_logo.svg/1200px-ChatGPT_logo.svg.png

Why not use deep learning for everything?

- With enough data, DNNs beat other ML approaches for learning on images, text, and audio data
- DNNs are often surpassed by decision tree-based models on tabular data
- DNN are near-impossible to interpret, so when this is required a linear model is preferable
- DNNs need lots of data to train from scratch which we may not have!
- DNNs are very expensive to train
- We can however use their features for related tasks

Summary

- We have considered learning our features instead of using a pre-existing map
- We have seen how the structure of a DNN facilitates feature learning
- We have looked at the MLP architecture and worked through some examples
- We have found out how to train an MLP using backpropagation + SGD
- We looked at different ways to regularise DNNs

The end (of the lectures)

- You have visualised and analysed data
- You have considered the ethical implications of deploying ML in society
- You have learnt about linear models for classification and regression
- You have learnt about non-parametric and non-linear models
- You have written code to use these models

[^0]: Warning! There be Jacobians. We aren't going to delve into what these terms actually look like on this course.

