Data Analysis and Machine Learning 4 (DAML)

Week 2: Summarising and visualising data

Recap

- We looked at different modalities of data

- We considered variable types
iris species (nominal)

level of education (ordinal)

Tabular data

- We will focus on this modality in this course
- It crops up a lot in real life and it is straightforward to work with

	sepal length $(\mathbf{c m})$	sepal width $(\mathbf{c m})$	petal length $(\mathbf{c m})$	petal width $(\mathbf{c m})$	species
$\mathbf{0}$	5.1	3.5	1.4	0.2	setosa
$\mathbf{1}$	4.9	3.0	1.4	0.2	setosa
$\mathbf{2}$	4.7	3.2	1.3	0.2	setosa
$\mathbf{3}$	4.6	3.1	1.5	0.2	setosa
$\mathbf{4}$	5.0	3.6	1.4	0.2	setosa
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$\mathbf{1 4 5}$	6.7	3.0	5.2	2.3	virginica
$\mathbf{1 4 6}$	6.3	2.5	5.0	1.9	virginica
$\mathbf{1 4 7}$	6.5	3.0	5.2	2.0	virginica
$\mathbf{1 4 8}$	6.2	3.4	5.4	2.3	virginica
$\mathbf{1 4 9}$	5.9	3.0	5.1	1.8	virginica

Summarising Data

World Happiness Report

- Produced by a non-profit of the United Nations
- What do you want to know when you see this?

Country or region	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity	Perceptions of corruption
Guatemala	6.436	0.800	1.269	0.746	0.535	0.175	0.078
Yemen	3.380	0.287	1.163	0.463	0.143	0.108	0.077
Netherlands	7.488	1.396	1.522	0.999	0.557	0.322	0.298
\cdots	...	\cdots	\cdots	\cdots	\cdots
Libya	5.525	1.044	1.303	0.673	0.416	0.133	0.152
Jamaica	5.890	0.831	1.478	0.831	0.490	0.107	0.028
United States	6.892	1.433	1.457	0.874	0.454	0.280	0.128

Extreme values

- Take maximum of score: Finland
- Take minimum of perceived corruption: Moldova

House buying

- Let's say I'm considering buying a property in Portobello
- What do I need to know?

Central values

- Good to know the mean house price
- Or median?

Summary statistics

- Most people will not scroll through a table!
- Summary statistics let us convey information as simply as possible
- We will now look at some (sample) statistics of (random) variables

Mode

- Suitable for summarising ordinal, nominal, and discrete variables
- Let's denote our (random) variable as X
- We have measurements of that variable
- The mode is the measurement that occurs the most

	Favourte Colour	3 red, 2 blue, 1 yellow
0	${ }^{\text {red }}$	
1	bue	
3	red	
4	bue	The mode is red
	yelow	

Mean

- Denote as μ. Suitable for summarising numerical variables
- For variable X we have N measurements $\left\{x^{(n)}\right\}_{n=1}^{N}$
- The measurements are just $x^{(1)}, x^{(2)}, \ldots, x^{(N)}$

$$
\mu_{x}=\frac{1}{N} \sum_{n=1}^{N} x^{(n)}
$$

	Mark (\%)
$\mathbf{0}$	60
$\mathbf{1}$	40
$\mathbf{2}$	45

Variance and Standard Deviation

- Let's denote variance as σ^{2} and Standard deviation (SD) as σ
- For variable X we have N measurements $\left\{x^{(n)}\right\}_{n=1}^{N}$

$$
\sigma_{x}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x^{(n)}-\mu_{x}\right)^{2}
$$

- Be aware that some definitions divide by $N-1$
- $N \approx N+1$ for large N so this isn't that important!

Standard Deviation

SD measures the extent to which measurements deviate from the mean

$$
\sigma=5
$$

$$
\sigma=10
$$

Skewness

- Denote using s. For variable X we have N measurements $\left\{x^{(n)}\right\}_{n=1}^{N}$

Positive skew
Bulk of measurements on the left Tail on the right

Negative skew
Bulk of measurements on the right Tail on the left

Median

- Order measurements of a numerical variable from lowest to highest
- The median is the measurement in the middle

$$
\begin{array}{lllllll}
1 & 2 & 3 & 5 & 8 & 12 & 17
\end{array}
$$

- The median is a robust statistic

122358121700000000

Medians are robust to outliers

Median salary is more meaningful than mean salary

Bet365 boss Denise Coates sees pay jump to $£ 221$ m
© 8 January
\longleftarrow

By Lora Jones

Business reporter, BBC News
The boss of Bet 365 was paid around $£ 221 \mathrm{~m}$ during its last financial year, despite the gambling giant reporting a significant loss.
business
FTSE 100 bosses earn average UK yearly pay after only three days
A typical boss of a company in London's top-flight stock market index makes $£ 3.8$ million a year

TAKEOVER DEALS DROP TO LOWEST SINCE FINANCIAL CRISIS (IAN WEST/PA)

DANIEL O'bOYLE @DAN_O_bOYLE DANIEL O'BOYLE
4 JANUARY 2024

Relating variables to each other

- We may be interested in the relationship between two variables
- Does GDP per capita relate to Healthy life expectancy?

Country or region	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity	Perceptions of corruption
Guatemala	6.436	0.800	1.269	0.746	0.535	0.175	0.078
Yemen	3.380	0.287	1.163	0.463	0.143	0.108	0.077
Netherlands	7.488	1.396	1.522	0.999	0.557	0.322	0.298
...	\cdots	...	\ldots	\ldots	...
Libya	5.525	1.044	1.303	0.673	0.416	0.133	0.152
Jamaica	5.890	0.831	1.478	0.831	0.490	0.107	0.028
United States	6.892	1.433	1.457	0.874	0.454	0.280	0.128

Covariance and correlation

- We have two numerical variables X and Y each with N measurements
- Let's compute the means and SDs of each: $\mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}$
- The covariance $\sigma_{x, y}$ and Pearson correlation coefficient $\rho_{x, y}$ are given by:

$$
\begin{gathered}
\sigma_{x, y}=\frac{1}{N} \sum_{n=1}^{N}\left(x^{(n)}-\mu_{x}\right)\left(y^{(n)}-\mu_{y}\right) \\
\rho_{x, y}=\frac{\sigma_{x, y}}{\sigma_{x} \sigma_{y}}
\end{gathered}
$$

Pearson correlation coefficient

- $\rho_{x, y}$ has a value between -1 and +1
- It gives a measure of how linear the relationship between X and Y is
- That is, the extent to which we can use a line to map one to the other
- 0.84 for GDP per capita and Healthy life expectancy

Pearson correlation coefficient

Pearson correlation coefficient

1	0.8	0.4	0	-0.4	-0.8	-1
1	1	1		-1	-1	-1
		-			
0	0	0	0	0	0	0

Spearman's rank correlation coefficient r_{s}

- This is the Pearson correlation coefficient of the ranks of two variables
- e.g. if $X=\{1,100,1000,10000\}, R(X)=\{4,3,2,1\}$
- It measures how monotonic the relationship between the variables is

The Pearson correlation here is 0.82 The Spearman correlation is 1

Correlation does not imply causation

Number of people who drowned by falling into a pool Films Nicolas Cage appeared in

Rubbish in, rubbish out

If your data is rubbish then anything you extract from it is also rubbish

- You might not have enough data points
- The process for collecting data might be flawed (e.g. biased)
- Measurements might be recorded incorrectly
- The variables chosen might not be useful

Misleading statistics

Can be nefarious, or just stupidity


```
M
Last Updated: Wednesday, 17 January 2007, 02:45 GMT
    uk| Colgate warned over '80%' boast
Northern Ireland The maker of Colgate
    Scotland toothpaste has been warne
    Wales not to repeat its famous
    siness advertising claim that "more
        recommend Colgate"
    Education The Advertising Standards
```



```
    Environment on Colgate posters was
nertainment "me pling"after investigati
Also in the news boast.
Video and Audio It found the dentists surveyed were allowed to name more
    Have Your Say than one brand.
    Magazine But the ASA said the advertising claim implied 80% of dentists
    In Pictures recommended Colgate to the exclusion of its rivals.
Special Reports In fact, the ASA's inquiry found another competitor's brand
Special Reports was recommended almost as much as Colgate was by those
related bbc sites dentists who were surveyed
    SPORT It added the survey "did not make clear the poll was on behalf
CBBC NEWSROUND
    of Colgate".
```


IANLON'S RAZOR

Never attribute to malice that which is adequately explained by stupidity

The limitations of summary statistics

Dataset: high_lines

Dataset: circle

All 12 of these datasets have the same $\mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}, \rho_{x, y}$

Visualising Data

Visualising data for presentation

- Conveying information as simply, and clearly as possible
- It is an art form, combining data analysis with graphic design

Fast-growing cities face worse climate risks Population growth 2018-2035 over climate change vulnerability
\bullet Africa \bigcirc Asia \bigcirc Americas \bigcirc Europe \bigcirc Oceania

Visualising data for presentation

Can be done badly e.g. overcomplicated or misleading

IAIN MCGILL:
RUTH DAVIDSON'S CANDIDATE

Two Horse Race

In Edinburgh North and Leith it's a two horse race between Labour and the SNP. The only way to stop the Nationalists is to vote Labour:Only in 2015 Labour was a close second to SNP. Conservatives a poor third, with Labour double their votes. In 2015 poor third, with Labour double their votes. In 2015
the SNP secured half of the Scottish vote, and these official figures show that has now plummeted by 18

Visualising data for presentation

Or can just be completely wrong

Visualising data for exploration

- This lets us find patterns, spot outliers/errors, identify important variables...
- It helps us decide which machine learning methods to use (if any!)
- We want to know if the data makes sense and if it is meaningful

Bar plots

- Good for visualising categorical variables
- If the variable is ordinal then make sure that the columns are in order

How would you rate this lecture?

Histograms

- Sorts measurements for numerical variables into equal sized bins
- The number of bins (and/or bin width) may need tweaking depending on use

There are strange y ticks on this plot.
This can also be tweaked!

Scatter plots in 2D

- Each point corresponds to a data item
- The x, y values for that point are measurements of two numerical variables
- We can also distinguish points by category by using different colours/shapes

Scatter plots in 3D

- We can have x, y, z values to show three measurements per point
- But beware: we can't see the space properly as its' only a 2D projection :(

Sepal Length vs. Petal length vs. petal width of irises

I tend to avoid 3D plots where possible

Line plots

- Can be useful for interpolation
- But can depict a functional relationship that doesn't exist if used carelessly

Box plots

- Shows 5 key statistics of a variable, each being an actual measurement
- Interquartile range (IQR) = upper quartile - lower quartile

Box plots

- We can view these statistics split by category
- Any points outside of the whiskers are plotted

Plot can be horizontal or vertical

Heat maps

- A matrix of colours representing different magnitudes of some quantity
- Here we have Pearson correlation of different attributes of penguins

And of course ... pie charts

Avoid!

Summary

- We have revised some statistics and seen how they can summarise data
- We have considered correlations for different pairs of variables
- We have seen examples of good and bad visualisations of data
- We have considered different ways of plotting data

