Data Analysis and Machine Learning 4 (DAML) Week 3: Preprocessing, PCA, clustering

Elliot J. Crowley, 29th January 2024

of EDINBURGH

Recap

• We reviewed summary statistics for datasets

• We considered different ways to visualise data

This week

- You will learn how to preprocess data so it can be used for various algorithms
 You will learn about principal component analysis (PCA) and how it can be
- You will learn about principal comp used for dimensionality reduction
- You will find out how to cluster data using the K-means algorithm

Preprocessing

Matrix inputs

- PCA and many machine learning (ML) methods require a matrix input
- Our dataset must (usually) be represented by a matrix of real numeric values
- Discrete and continuous are both fine; we just pretend everything is continuous
- Given tabular data, we need to convert it into such a matrix

	Height (cm)	Age	Favourite colour
0	185	32	blue
1	193	70	red
2	147	77	brown
3	163	26	blue

?

Representing a dataset as a matrix

- We have tabular data with N data points (rows) and C features (cols)
- For now, we will drop features that don't correspond to numeric variables
- If there are now D features we can represent the dataset by a $N \times D$ matrix

	Height (cm)	Age	Favourite colour	I
0	185	32	blue	0
1	193	70	red	1
2	147	77	brown	2
3	163	26	blue	3

Representing data points as vectors

- We are representing our dataset using a $N \times D$ dataset matrix X
- Each row is a data point that lives in D-dimensional space

• Let's denote these as $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \dots, \mathbf{x}^{(N)}$ or $\{\mathbf{x}^{(n)}\}_{n=1}^N$. They are vectors

What if we have a missing (or wrong!) value for a feature?

• **Option 1**: Remove the affected data point(/s)

	Height	(cm)	W	/eigh	nt (kg)	Age
0		0.01			80.0	32
1	19	93.00			NaN	70
2	14	47.00			62.0	77
3	10	63.00			72.0	26
4	1	50.00			64.0	21
5	18	85.00			74.0	52

Option 2: Impute a valu

ŀ	leight (cm)	Weight (kg)	Age	L [147]	62
0	0.01	80.0	32		
+	199.00	NaN	70	V 163	72
2	147.00	62.0	77	$\mathbf{A} = _{150}$	61
3	163.00	72.0	26		04
4	150.00	64.0	21	185	7Δ
•.g.	the	avera	age	e for that feature) $\begin{bmatrix} - \\ 168 \end{bmatrix}$	80
e.g.	the leight (cm)	avera Weight (kg)	age	e for that feature) $\begin{bmatrix} -168\\ 168 \end{bmatrix}$	80 70
e.g.	the Height (cm) 168	AVERA Weight (kg) 80.0	Age	e for that feature) [168 193	80 70
9.g.	the Height (cm) 168 193.00	AVERA Weight (kg) 80.0 70	Age 32 70	e for that feature) [168 193 147	80 70 62
9.9. F 0 1 2	the height (cm) 168 193.00 147.00	AVEra Weight (kg) 80.0 70 62.0	Age 32 70 77	e for that feature) $ \begin{bmatrix} 168\\ 193\\ 147\\ 163 \end{bmatrix} $	80 70 62 72
- 9 - F 0 1 2 3	the height (cm) 163.00	Weight (kg) 80.0 70 62.0 72.0	Age 32 70 77 26	e for that feature) $\mathbf{X} = \begin{bmatrix} 168\\ 193\\ 147\\ 163\\ 163\\ 163\\ 167 \end{bmatrix}$	80 70 62 72
9. 9. H 0 1 2 3 4	the height (cm) 163.00 150.00	Weight (kg) 80.0 70 62.0 72.0 64.0	Age 32 70 77 26 21	e for that feature) $I = \begin{bmatrix} 168 \\ 193 \\ 147 \\ 163 \\ 150 \end{bmatrix}$	80 70 62 72 64

	Height (cm)	Weight (kg)	Age
0	0.01	80.0	32
1	193.00	NaN	70
2	147.00	62.0	77
3	163.00	72.0	26
4	150.00	64.0	21
5	185.00	74.0	52

What if we want to include categorical variables?

• If ordinal we can map to numbers that maintain order

	Height (cm)	Age	Highest qualification
0	185	32	Bachelors
1	193	70	PhD
2	147	77	Masters
3	163	26	Bachelors

If nominal we can create a binary feature for each category

	Height (cm)	Age	Favourite colour
0	185	32	blue
1	193	70	red
2	147	77	brown
3	163	26	blue

ight (cm)	Age	Favourite colour_blue	Favourite colour_brown	Favourite colour_red
185	32	1	0	0
193	70	0	0	1
147	77	0	1	0
163	26	1	0	0

Data points are column vectors

- It is standard with tabular data to have the rows as data points
- But in ML literature it is convention to denote all vectors including data points
 x as column vectors
- It is also convention to represent a dataset as $\mathbf{X} \in \mathbb{R}^{N \times D}$ (in the same way we just did) where the **rows** are those data points
- Just be aware of this peculiarity!

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}$$

$$\mathbf{x}^{(n)} = \begin{bmatrix} x_1^{(n)} \\ x_2^{(n)} \\ \vdots \\ x_D^{(n)} \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)^{\mathsf{T}}} \\ \mathbf{x}^{(2)^{\mathsf{T}}} \\ \mathbf{x}^{(3)^{\mathsf{T}}} \\ \vdots \\ \mathbf{x}^{(N)^{\mathsf{T}}} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_D^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_D^{(2)} \\ x_1^{(3)} & x_2^{(3)} & \dots & x_D^{(3)} \\ \dots & \dots & \ddots & \vdots \\ x_1^{(N)} & x_2^{(N)} & \dots & x_D^{(N)} \end{bmatrix}$$

Why vectors?

- We can now use the machinery of linear algebra for PCA and ML
- **Matrices linearly transform vectors**
- Computers are very good at matrix multiplication
- Neural networks consist of multiple matrices (See Week 10!)

Can we represent other types of data as vectors?

• Yes! We can flatten or *vectorise* images

e.g. [#"I", #"like", #"sausage", #"hate"]

I like sausage I hate sausage

 $\begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^{\top}$ $\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}^{\perp}$

• We can represent text data as a histogram of word counts (a bag of words)

sausage sausage

 $[0 \ 0 \ 2 \ 0]^{\perp}$

Standardising your data

- Measurements of different features can have vastly different scales
- We want to compare features like-for-like and not let those with naturally large values dominate
- The solution is to **standardise** your data
- We want each column of \boldsymbol{X} to have a mean of 0 and a SD of 1

	Height (cm)	Age	Salary (£)	
0	190	44	25000	
1	143	36	29000	
2	152	20	100000	
3	178	56	67000	

 190
 44
 25000

 143
 36
 29000

 152
 20
 100000

 178
 56
 67000

Standardising your data

- We want each column of \boldsymbol{X} to have a mean of 0 and a SD of 1
- For each column, compute the mean and SD
- Then subtract the mean from each value and divide by SD
- This is essential for PCA and many ML algorithms

$$\mathbf{X}_{old} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_D^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_D^{(2)} \\ \dots & \dots & \ddots & \vdots \\ x_1^{(N)} & x_2^{(N)} & \dots & x_D^{(N)} \end{bmatrix} \qquad \qquad \mu_j = \frac{1}{N} \sum_n \mathbf{x}_j^{(n)} \\ \sigma_j^2 = \frac{1}{N} \sum_n (\mathbf{x}_j^{(n)} - \mu_j)^2 \qquad \qquad \mathbf{X}_{new} = \begin{bmatrix} \frac{x_1^{(1)} - \mu_1}{\sigma_1} & \frac{x_2^{(1)} - \mu_2}{\sigma_2} & \dots & \frac{x_D^{(1)} - \mu_D}{\sigma_D} \\ \frac{x_1^{(2)} - \mu_1}{\sigma_1} & \frac{x_2^{(2)} - \mu_2}{\sigma_2} & \dots & \frac{x_D^{(2)} - \mu_D}{\sigma_D} \\ \frac{x_1^{(N)} - \mu_1}{\sigma_1} & \frac{x_2^{(N)} - \mu_2}{\sigma_2} & \dots & \frac{x_D^{(N)} - \mu_D}{\sigma_D} \end{bmatrix}$$

Normalising vs. standardising

- Nomenclature can vary but in this course <u>standardising</u> refers to scaling each variable to zero mean and unit variance
- We can do other forms of scaling e.g. divide each variable by its maximum value
- We will refer to other forms of scaling as <u>normalising</u>
- Generally, anything that gets different variables to similar ranges is fine just make sure you do it!

If you have a bunch of binary variables you can just leave things alone!

Principal Component Analysis (PCA)

Motivation for PCA

- Most data is high dimensional
- This makes it hard to visualise patterns across a whole dataset

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0

Tables with >3 columns

Time series with thousands of points

Images with millions of pixels

Dimensionality reduction

- We could use a linear transform to reduce the dimensionality of our data
- $\mathbf{Z} = \mathbf{X}\mathbf{W}$ with $\mathbf{W} \in \mathbb{R}^{D \times d}$ transforms $\{\mathbf{x}^{(n)}\}_{n=1}^{N}$ (the rows of \mathbf{X}) into $\{\mathbf{z}^{(n)}\}_{n=1}^{N}$ (the rows of \mathbf{Z}) where $\mathbf{x} \in \mathbb{R}^{D}$ and $\mathbf{z} \in \mathbb{R}^{d}$
- Then we could look at a scatter plot of $\{\mathbf{z}^{(n)}\}_{n=1}^N$ (if e.g. d=2) to see patterns
- But how do we know what the best transform is?

Minimising reconstruction loss

- Treat the matrix $\mathbf{W} \in \mathbb{R}^{D \times d}$ as an encoder. We apply it to get to a low dimensional space $\mathbf{Z} = \mathbf{X}\mathbf{W}$ where $\mathbf{Z} \in \mathbb{R}^{N \times d}$
- We can then apply its transpose to decode $\hat{\mathbf{X}} = \mathbf{Z}\mathbf{W}^{ op}$ where $\hat{\mathbf{X}} \in \mathbb{R}^{N imes D}$
- The rows of $\hat{\mathbf{X}}$: $\{\hat{\mathbf{x}}^{(n)}\}_{n=1}^{N}$ are reconstructions of the data points $\{\mathbf{x}^{(n)}\}_{n=1}^{N}$
- We should minimise the distance between points and their reconstructions so that ${\bf Z}$ is a faithful low dimensional representation of the dataset

Minimising reconstruction loss

- We should minimise the (average square) distance between points and their reconstructions $\frac{1}{N} \sum \|\mathbf{x}^{(n)} \hat{\mathbf{x}}^{(n)}\|^2 = \frac{1}{N} \sum \|\mathbf{x}^{(n)} \mathbf{W}^\top \mathbf{W} \mathbf{x}^{(n)}\|^2$
- We also want the low dimensional features z_1, z_2, \ldots to be **uncorrelated** to
- Overall we want to solve minimise -W
- PCA gives us the solution to this

minimise redundancy between features. This is achieved when $\mathbf{W}^{\mathsf{T}}\mathbf{W} = \mathbf{I}$

$$\frac{1}{N} \sum_{n} \|\mathbf{x}^{(n)} - \mathbf{W}^{\mathsf{T}} \mathbf{W} \mathbf{x}^{(n)}\|^2 \text{ s.t. } \mathbf{W}^{\mathsf{T}} \mathbf{W} = \mathbf{I}$$

 $\mathbf{Z}\mathbf{W}^{\top} = \mathbf{X}\mathbf{W}\mathbf{W}^{\top}$ for the dataset matrix means $\mathbf{W}^{\mathsf{T}}\mathbf{z} = \mathbf{W}\mathbf{W}^{\mathsf{T}}\mathbf{x}$ for each column vector data point

Principal Component Analysis (PCA)

• The columns of W_{PC} : $\{w_d\}_{d=1}^D$ are the **principal components** of the data

- The matrix that solves minimise $-\frac{1}{W}$ for $\mathbf{W} \in \mathbb{R}^{D \times d}$ is $\mathbf{W} = [\mathbf{W}_1 \ \mathbf{W}_2]$
- i.e. it's the matrix whose columns are the first d principal components

• For a <u>standardised</u> dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$, PCA returns a matrix $\mathbf{W}_{PC} \in \mathbb{R}^{D \times D}$

$$\frac{1}{N} \sum_{n} \|\mathbf{x}^{(n)} - \mathbf{W}^{\mathsf{T}} \mathbf{W} \mathbf{x}^{(n)}\|^2 \text{ s.t. } \mathbf{W}^{\mathsf{T}} \mathbf{W} = \mathbf{I}$$
$$\dots \mathbf{W}_d \mathbf{J}$$

 $\mathbf{X}\mathbf{W}\mathbf{W}^{\mathsf{T}}$ for the dataset matrix translates to $\mathbf{W}\mathbf{W}^{\mathsf{T}}\mathbf{x}$ for each column vector data point

Computing principal components

- 1. Construct the covariance matr
- 2. Eigendecompose Σ to get eigenvalue, eigenvector pairs
- 3. Sort pairs by decreasing eigenvalue and denote as $\{\lambda_d\}_{d=1}^D, \{\mathbf{w}_d\}_{d=1}^D$

To compute principal components for a <u>standardised</u> dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$:

$$\operatorname{ix} \mathbf{\Sigma} = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X}$$

These vectors are the principal components

PCA for dimensionality reduction

- PCA gives us $\mathbf{W} \in \mathbb{R}^{D \times D}$ where $\mathbf{W} = [\mathbf{W}_1 \ \mathbf{W}_2 \ \cdots \ \mathbf{W}_D]$
- To reduce to d < D dimensions we can just keep the first d columns
- e.g. $W_{d=2} = [W_1 \ W_2]$ would take our data to 2D using $Z = XW_{d=2}$

Minimising reconstruction error maximises variance

- PCA gives us the (linear) direction of maximum variance in z_1
- It gives us the (orthogonal) next largest direction of maximum variance in z_2
- And so on. This is neat, but to me, less intuitive than reconstruction error

PCA for dimensionality reduction on irises

- The iris dataset contains 150 data points

Make sure that X is standardised

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

- Let's take the numeric columns to form a dataset matrix $\mathbf{X} \in \mathbb{R}^{150 imes 4}$

 $\begin{bmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \\ 4.6 & 3.1 & 1.5 & 0.2 \\ 5.0 & 3.6 & 1.4 & 0.2 \\ \dots & \dots & \dots & \dots \\ 0.7 & 3.0 & 5.2 & 2.3 \\ 6.3 & 2.5 & 5.0 & 1.9 \end{bmatrix} \longrightarrow \begin{bmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 0.9 & 1.0 & -1.3 & -1.3 \\ -1.1 & -0.1 & -1.3 & -1.3 \\ -1.4 & 0.3 & -1.4 & -1.3 \\ -1.5 & 0.1 & -1.3 & -1.3 \\ -1.0 & 1.2 & -1.3 & -1.3 \\ \dots & \dots & \dots \\ 0 & -0.1 & 0.8 & 1.4 \\ 0.6 & -1.2 & 0.7 & 0.0 \end{bmatrix}$ 2.5 5.0 1.9 6.3 0.9 0.6 - 1.3 0.76.5 3.0 5.2 2.0 -0.10.8 0.8 6.2 3.4 5.4 2.3 0.9 0.4 0.8 5.9 3.0 5.1 1.8 0.1 0.8 -0.1

PCA for dimensionality reduction on irises

- Use PCA to form $\mathbf{W}_{PC} \in \mathbb{R}^{4 \times 4}$
- Now use $\mathbf{Z} = \mathbf{X} [\mathbf{W}_1 \ \mathbf{W}_2]$ to project down to 2D
- Different species are distinguishable just by looking at z_1
- These new dimensions were found automatically

$$z_1 = -0.52x_1 - 0.27x_2 - 0.58x_3 + 0.000$$

 $z_2 = -0.38x_1 + 0.92x_2 + 0.02x_3 + 0.07x_4$

- $0.56x_4$

PCA for dimensionality reduction on wine

- We have a red wine dataset $\mathbf{X} \in \mathbb{R}^{1599 \times 11}$
- Each wine has also been scored by an expert between 0 and 10
- We can look at a few examples but it's hard to get the full picture

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides
0	7.4	0.700	0.00	1.9	0.076
1	7.8	0.880	0.00	2.6	0.098
1597	5.9	0.645	0.12	2.0	0.075
1598	6.0	0.310	0.47	3.6	0.067

PCA for dimensionality reduction on wine

- Now use $\mathbf{Z} = \mathbf{X} [\mathbf{W}_1 \ \mathbf{W}_2]$ to project down to 2D

- Let's standardise our data, and then use PCA to form $\mathbf{W}_{PC} \in \mathbb{R}^{11 imes 11}$

PCA for dimensionality reduction on wine

- We can see in this space that good wines tend to be near the bottom
- What makes a good wine? A negative *z*₂ of course!

Good wine recipe: make z₂ negative

• The new dimensions are just linear combinations of the original dimensions

- In a lot of cases the new dimensions aren't very intuitive
- PCA is best used for exploratory data analysis

 $z_2 = -0.11x_1 + 0.27x_2 - 0.15x_3 + 0.27x_4 + 0.15x_5 + 0.51x_6 + 0.57x_7 + 0.23x_8 + 0.01x_9 - 0.04x_{10} - 0.39x_{11}$

Importance of components

- Performing PCA gives us eigenvalue, eigenvector pairs $\{\lambda_d\}_{d=1}^D, \{\mathbf{w}_d\}_{d=1}^D$
- The eigenvectors are our principal components
- The eigenvalues are an importance weighting for each component

The first principal component explains

s
$$\frac{\lambda_1}{\sum_{d=1}^D \lambda_d}$$
 of the variance of the data

Importance of components

Be careful throwing away dimensions if not enough variance is explained

Explaining variance of irises

1D: 73%

2D: 96%

3D: 99%

Explaining variance of wine

1D: 28%

2D: 45%

3D: 60%

Limitations: PCA is susceptible to outliers

Outliers can change the direction of maximum variance

Limitations: PCA is linear

W

If the true direction of maximum variance isn't a line, PCA can't find it

Clustering with K-means

Motivation

You have a dataset that you want to split into groups

- people with low, medium, high income for marketing
- grouping shoppers to recommend products
- identifying personality types for a dating website

K-means

- We can use K-means to automatically split our dataset in groups
- Other clustering algorithms are available!

ally split our dataset in groups

K-means algorithm

- Select the number of clusters K
- Initialise the cluster centres $\{\mathbf{c}_k\}_{k=1}^K$ at random
- Repeat:

 - 2. Update cluster centres as mean of their assigned points
- Until no change

1. Assign each (ideally standardised) data point to its nearest cluster centre

Credit: Andrew Zisserman (for the slide idea, not the algorithm) 40

K-means walkthrough with K = 3

Initialise the cluster centres $\{\mathbf{c}_k\}_{k=1}^K$ at random

Assign each data point to its nearest cluster centre

K-means walkthrough with K = 3

Update cluster centres as mean of their assigned points Assign each data point to its nearest cluster centre

Warning!

- K-means is very sensitive to where the initial cluster centres are placed
- The number of clusters is user defined
- The clusters might not be meaningful

This data is just noise!

Summary

- We have learnt how to preprocess data
- We have seen how PCA can be used for dimensionality reduction
- We have been introduced to K-means and how it can cluster data