
Elliot J. Crowley, 12th February 2024

Data Analysis and Machine
Learning 4 (DAML)
Week 5: Linear models for regression

• We learned about supervised learning and looked at some examples

• We considered ethical issues that can arise when applying ML in society

Recap

image model category 
decision

2

Supervised Learning
• We want a model that takes in a new data point and outputs a prediction

• For the model to be accurate it must first learn from training data

• Often, models are parameterised functions and learning = finding the best parameters

• Training data is a set of existing data points that have been labelled

• The label says what the prediction for that data point should be

new 
data model prediction

3

Two canonical problems in supervised learning

• Regression: Given input data, predict a continuous output

• Classification: Given input data, predict a distinct category

cat dog

4

Linear models for regression

5

The regression problem

• Our training set consists of data point-target pairs

• Data points are column vectors, targets (/labels) are scalar

• We can use matrix/vector notation as in Week 3

• Objective: We want some function such that for each training
point. This function is our regression model

N {(x(n), y(n))}N
n=1

x ∈ ℝD y ∈ ℝ

f f(x(n)) = y(n)

X =

x(1)⊤

x(2)⊤

x(3)⊤

⋮
x(N)⊤

=

x(1)
1 x(1)

2 … x(1)
D

x(2)
1 x(2)

2 … x(2)
D

x(3)
1 x(3)

2 … x(3)
D

… … ⋱ ⋮
x(N)

1 x(N)
2 … x(N)

D

y =

y(1)

y(2)

y(3)

⋮
y(N)

6

Simple linear regression

• We have 1D measurements of mass-extension pairs

• We want a model represented by s.t. for each point

• Let’s fit a line and denote its outputs as

{(x(n), y(n))}N
n=1

f f(x(n)) = y(n)

̂y

f(x) = ̂y = wx + b
 and are the parameters of the model

 is called the weight and is called the bias

w b

w b

7

Our model predicts the targets

• are predictions of our targets

• We wanted a model such that for each point

• But we can’t achieve this: a line can’t perfectly fit the data here

• Can we relax our objective?

̂y(1), ̂y(2), …, ̂y(N) y(1), y(2), …, y(N)

f ̂y(n) = y(n)

f(x) = ̂y = wx + b

8

The squared error loss function

• Let’s instead minimise the square distance between every and :

• In ML, given an objective, we typically construct a loss function

• This is a function of the model parameters and the data

̂y(n) y(n)

(y(n) − ̂y(n))2

LSE = ∑
n

(y(n) − ̂y(n))2

Our objective is achieved when the loss
function is minimised

9

Minimising squared error

• Let’s write and so

• We want to find that minimises

• We can express this loss as a vector norm with some rewriting:

w = [b w]⊤ x = [1 x]⊤ f(x) = ̂y = w⊤x

w LSE(w) = ∑
n

(y(n) − w⊤x(n))2

X =

x(1)⊤

x(2)⊤

x(3)⊤

⋮
x(N)⊤

LSE(w) = ∥y − Xw∥2y =

y(1)

y(2)

y(3)

⋮
y(N)

10

Vector calculus to the rescue

• Take the gradient and set to zero to get minimum

• And rearrange

LSE(w) = ∥y − Xw∥2 = (y − Xw)⊤(y − Xw)

∇wLSE = − 2X⊤(y − Xw) = 0

w* = (X⊤X)−1X⊤y

This function is convex: it only
has one extremum which is a

minimum

You are not required to do any vector or matrix calculus by hand on this course.
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf is a useful reference for this however.

11

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

A line of best fit

Compute where

w* = (X⊤X)−1X⊤y w* = [b* w*]⊤

This is the intercept and slope of a line that
minimises the distances

 between target and predictions

12

A probabilistic interpretation

• Let’s make the perfectly normal assumption

• We would then want a model that maximises the probability of our targets
across all our data points a.k.a. the likelihood of our data

• Maximising likelihood is the same as minimising negative log-likelihood

• After a bit of maths we can write the negative log-likelihood as:

p(y |x) = 𝒩(y; w⊤x, σ2)

∏
n

p(y(n) |x(n))

NLL(w) =
1

2σ2 ∑
n

(y(n) − ̂y(n))2 +
N
2

log(2πσ2)

Minimising MSE loss is the
same as maximising

likelihood!
13

Multiple linear regression

• We just performed simple linear regression, mapping

• Multiple linear regression maps

• Let’s predict petal width from the other three features in the iris dataset

ℝ → ℝ

ℝD>1 → ℝ

Our linear model is a weighted sum of the
features plus a bias

f(x) = ̂y = w1x1 + w2x2 + w3x3 + b
Petal width prediction

Sepal length Sepal width Petal length

14

• Our linear model is

• We want to find the parameters that minimise

• Let’s write and

• This gives us again

•

• Same solution:

f(x) = ̂y = w1x1 + w2x2 + w3x3 + b

w1, w2, w3, b LSE = ∑
n

(y(n) − ̂y(n))2

w = [b w1 w2 w3]⊤ x = [1 x1 x2 x3]⊤

f(x) = ̂y = w⊤x

LSE = ∑
n

(y(n) − ̂y(n))2 = ∥y − Xw∥2

w* = (X⊤X)−1X⊤y

Minimising squared error (again!)

15

Model evaluation: Mean squared error

• We could look at a plot our predictions against the targets
 but it’s nice to summarise performance using a score

• That score could be the mean squared error

̂y(1), ̂y(2), …, ̂y(N)

y(1), y(2), …, y(N)

LMSE =
1
N ∑

n

(y(n) − ̂y(n))2

MSE is the average of the distances
between predictions and targets

Here MSE is 0.03586. Low is good

Warning! MSE depends on the scale of
your data

16

Model evaluation: Coefficient of Determination R2

• is the default score for regression in sklearn

• It is 1 minus the reduction in error when you use your model’s prediction
instead of the mean of the targets

• It is maximally 1 (which is best) and can be negative if your predictions are
worse than using the target mean!

• It can be seen as a measure of how much of the variance in the targets is
explained by the model

R2

R2 = 1 −
∑n (y(n) − ̂y(n))2

∑n (y(n) − ȳ)2
Mean y

17

Machine Learning is…

“the study of algorithms that can learn from
training data in order to make predictions
on new data.”
Elliot J. Crowley

18

Test set

• We ultimately want our model to do well on new data

• Models should be evaluated on data that wasn’t used for training

• Solution: Evaluate model on a test set (can split dataset into train/test)

• A model that can perform well on test is able to generalise

• The test set must never be used to fit the model

A model that performs
badly on the test set is

rubbish!

19

Evaluation

• Let’s split the iris dataset into 80% training and 20% test at random

• Learn weights on train, apply to test

• Train MSE: 0.03536 and Test MSE: 0.03906

• Train : 0.9409 and Test : 0.9179R2 R2

20

How do we interpret the model?

• With linear models, the weights tell you the contribution of each variable to
the prediction

• But this isn’t simple to interpret if the data isn’t standardised

w =

b
w1
w2
w3

=

−0.32
−0.18
0.21
0.52

̂y = − 0.18x1 + 0.21x2 + 0.52x3 − 0.32

Variables have their own scales!

Petal width prediction Sepal length Sepal width Petal length

21

Standardised results

• We compute the variable means and standard deviations on the training set

• Then apply these to the training set and the test set!

• The learnt weights are now simple to interpret

̂y = − 0.15x1 + 0.09x2 + 0.92x3 + 1.17
Petal width prediction Standardised

Sepal length
Standardised

Sepal width

Standardised

Petal length

22

• Consider the 1D training set of data-target pairs below

• The relationship between data and targets is curvilinear

• Simple linear regression produces a model that underfits to the data

• The model doesn’t have the capacity to capture the way the data varies

{(x(n), y(n))}N
n=1

Polynomial regression

23

Polynomial regression

• Let’s try fitting a polynomial

• Using we have and can get a good fit

• The model is still linear in the weights

̂y = f(x) = b +
M

∑
m=1

wmxm

M = 3 f(x) = b + w1x + w2x2 + w3x3

24

How do we fit this function?

• Our function is

1. Define

2. Write  

• We get . This looks familiar…

• It’s the same as before except we have a feature transformation

̂y = f(x) = b +
M

∑
m=1

wmxm

ϕ(x) = [1 x x2 … xM]⊤

w = [b w1 w2 … wM]⊤

f(x) = ̂y = w⊤ϕ(x)

ϕ(x)

25

• Our linear model is

• We want to find the that minimise

• Define then we get

• Extremely similar solution:

f(x) = ̂y = w⊤ϕ(x)

w LSE = ∑
n

(y(n) − ̂y(n))2

Φ =

ϕ(x(1))⊤

ϕ(x(2))⊤

ϕ(x(3))⊤

⋮
ϕ(x(N))⊤)

LSE = ∑
n

(y(n) − ̂y(n))2 = ∥y − Φw∥2

w* = (Φ⊤Φ)−1Φ⊤y

Minimising squared error (yet again)

View and as interchangeable here.
It depends if we have a feature

transformation or not

Φ X

26

Varying M

27

• These models have overfit to the training data

• We want our models to generalise to test data —these don’t!

• Spoilers:

• The models have too much capacity, and are latching on to the noise

y = sin((x − a)/b) + 𝒩(0,0.252)

Overfitting

28

Regularisation

• We ultimately want to maximise test performance i.e. minimise test error

• The model should have the capacity to represent the function we care about

• But high capacity models tend to overfit

• Regularisation techniques combat overfitting by making the model simpler

This figure is my reproduction of Figure 5.3 from https://www.deeplearningbook.org/contents/ml.html
29

L2 regularisation

• Overfitted models tend to have large weights

• We can regularise our model by penalising large weight values

• Let’s add a term to our loss function that is small when weights are small

y = 30.38x19 − 18.83x18 − 313.41x17 + …

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

Probabilistic interpretation: We
are placing a Gaussian prior on

the weights and performing MAP
inference

30

Ridge regression

 where

• is a hyperparameter that tells us how important regularisation is

• Let’s take the gradient and set to zero to get the optimal weights

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

∥w∥2 = w⊤w

λ

∇wLridge = − 2Φ⊤(y − Φw) + 2λw = 0

w* = (Φ⊤Φ + λI)−1Φ⊤y

This function is convex: it
only has one extremum

which is a minimum

But in practice, we don’t
regularise the bias term.
Sklearn will deal with this

for you
31

Varying for λ M = 19

32

The validation set

• Our goal is to perform well on the test set. Can we try different values of and
pick the one that maximises test performance?

• No! This would be using the test set to select the model

• Instead, we split the dataset three-ways: train, validation, test

• The validation set is used for model selection

• i.e. we can evaluate models with different and select the one that does best
on validation

λ

λ

Sometimes we will just use default hyperparameter
values however

33

Hyperparameter tuning with grid search

• Create a list of values and for each value fit a model on the training set

• Evaluate each model on the validation set (e.g. with MSE or)

• Select the model that performs best on validation then evaluate on test

λ

R2

34

Grid search

• We create a grid of possible values for each hyperparameter

• We then train a model for each grid element, and pick the model that
performs best on the validation set. This is model selection

• With one hyperparameter, the grid is 1D, with two it’s 2D and so on

• This can quickly get very expensive!

Imagine we have
hyperparameters and .

Let’s search over
and

α β
α = {0,1}

β = {0.1,1,10}

R2
val = 0.46α = 0

α = 1

β = 0.1 β = 1 β = 10

R2
val = 0.52 R2

val = 0.39

R2
val = 0.73 R2

val = 0.87 R2
val = 0.79

35

Other feature transformations are available

• We can design our own ; is often referred to as the design matrix

• Each element could be a Gaussian centred on each training point

• Here, is an additional hyperparameter

ϕ(x) Φ

ϕ(x) = [e−(x−x(1))2/σ2 e−(x−x(1))2/σ2 e−(x−x(2))2/σ2 … e−(x−x(N))2/σ2]⊤

σ

36

Lasso regression

• Very similar to ridge regression except the SE term has been scaled and the
regularisation term is a 1-norm

• 1-norm encourages sparsity in which is a form of feature selectionw

Llasso(w) =
1

2N
∥y − Xw∥2

MSE

+ λ |w |
⏟

regularisation

The minimum occurs at one of the points where
the contours of the two terms are at a tangent

Such points are more likely to occur at the
corners of the 1-norm contours

Remember that we can
interchange and in these

equations
Φ X

Probabilistic interpretation: We are placing a
Laplace prior on our weights

37

Optimisation

• Finding the weights that minimise a loss function on training data is an
optimisation problem with solution

• This was simple for which is convex and differentiable

• We just compute and set to zero

• However, is non-differentiable

minimise
w

L(w) w* = arg min
w

L(w)

Lridge(w)

∇wLridge

Llasso(w)

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation

38

Convexity

• Convex functions have one extremum which is a minimum. This is very useful
for optimisation!

• A function of one variable is convex if a line drawn between any two points on
the function doesn’t fall below the function

39

Lasso is convex

• is convex (as is): it clearly has a minimum at .

• It not being differentiable doesn’t change this

• The sum of two convex functions is convex

• is convex, we just need to find its minimum

|w | |w | w = 0

Llasso(w)

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation

40

Subderivatives

• is piecewise differentiable

• We can evaluate the gradient at any point (except)

• This is all we need to do to perform gradient descent (GD)

g(w) = |w |

w = 0

dg
dw

= {1 if w > 0
−1 if w < 0

41

Gradient descent (GD) intuition

• We have a function and we want to find

• Let’s initialise at random and call it

• The gradient at : tells us locally the direction we can move
 to most increase the function

• Move in the opposite direction!

L(w) w* = arg min
w

L(w)

w wt=0

wt=0 ∇wL(wt=0)
wt=0

wt=1 = wt=0 − α∇wL(wt=0)

42

Gradient descent (GD) rationale

• Consider the loss at :

• Let’s take a small step in weight space, so

• Because this is small we can approximate using a 1st order Taylor
expansion

•

• If we set then as long as is small

• We can therefore keep taking steps to minimise loss

wt=i L(wt=i)

wt=i+1 = wt=i + Δ

L(wt=i+1)

L(wt=i+1) = L(wt=i + Δ) ≈ L(wt=i) + ∇wL(wt=i)⊤Δ

Δ = − α∇wL(wt=i) L(wt=i+1) ≤ L(wt=i) α

43

Gradient descent (GD) algorithm

Goal: We have a function and we want to find

• Initialise as

• For in range(T):

1. Compute

2. Update

L(w) w* = arg min
w

L(w)

w wt=0

i

∇wL(wt=i)

wt=i+1 = wt=i − α∇wL(wt=i)

 is called the step size, or learning rate

It is yet another hyperparameter

α

44

Optimisation algorithms

• Using an optimisation algorithm to learn the weights that minimise a loss
function on training data is known as training or fitting or learning!

• There are many optimisation algorithms; some work better than others for
different methods

• We will only detail variations of gradient descent on this course

• Sklearn will default to whatever optimiser tends to work best for a method

• Please be happy using optimisation algorithms that you haven’t learnt about,
and if you’re not — go find out how they work!

45

Summary

• We have learnt about linear regression

• We have reasoned about the need for a test set for evaluation

• We have discovered how regularisation can prevent overfitting

• We have learnt how a validation set can be used to perform model selection

• We have found out what convex functions are

• We have explored gradient descent for optimising convex functions

46

