Data Analysis and Machine Learning 4 (DAML)

Week 5: Linear models for regression

Recap

- We learned about supervised learning and looked at some examples

- We considered ethical issues that can arise when applying ML in society

Cambridge Analytica

Supervised Learning

- We want a model that takes in a new data point and outputs a prediction

- For the model to be accurate it must first learn from training data
- Often, models are parameterised functions and learning = finding the best parameters
- Training data is a set of existing data points that have been labelled
- The label says what the prediction for that data point should be

Two canonical problems in supervised learning

- Regression: Given input data, predict a continuous output

- Classification: Given input data, predict a distinct category

Linear models for regression

The regression problem

- Our training set consists of N data point-target pairs $\left\{\left(\mathbf{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$
- Data points $\mathbf{x} \in \mathbb{R}^{D}$ are column vectors, targets (/labels) $y \in \mathbb{R}$ are scalar
- We can use matrix/vector notation as in Week 3

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}^{(1)^{\top}} \\
\mathbf{x}^{(2)^{\top}} \\
\mathbf{x}^{(3)^{\top}} \\
\vdots \\
\mathbf{x}^{(N)^{\top}}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1}^{(1)} & x_{2}^{(1)} & \ldots & x_{D}^{(1)} \\
x_{1}^{(2)} & x_{2}^{(2)} & \ldots & x_{D}^{(2)} \\
x_{1}^{(3)} & x_{2}^{(3)} & \ldots & x_{D}^{(3)} \\
\ldots & \ldots & \ddots & \vdots \\
x_{1}^{(N)} & x_{2}^{(N)} & \ldots & x_{D}^{(N)}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
y^{(3)} \\
\vdots \\
y^{(N)}
\end{array}\right]
$$

- Objective: We want some function f such that $f\left(\mathbf{x}^{(n)}\right)=y^{(n)}$ for each training point. This function is our regression model

Simple linear regression

- We have 1D measurements of mass-extension pairs $\left\{\left(x^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$
- We want a model represented by f s.t. $f\left(x^{(n)}\right)=y^{(n)}$ for each point
- Let's fit a line and denote its outputs as \hat{y}

$$
f(x)=\hat{y}=w x+b
$$

w and b are the parameters of the model
w is called the weight and b is called the bias

Our model predicts the targets

- $\hat{y}^{(1)}, \hat{y}^{(2)}, \ldots, \hat{y}^{(N)}$ are predictions of our targets $y^{(1)}, y^{(2)}, \ldots, y^{(N)}$
- We wanted a model f such that $\hat{y}^{(n)}=y^{(n)}$ for each point
- But we can't achieve this: a line can't perfectly fit the data here
- Can we relax our objective?

$$
f(x)=\hat{y}=w x+b
$$

The squared error loss function

- Let's instead minimise the square distance between every $\hat{y}^{(n)}$ and $y^{(n)}$: $\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}$
- In ML, given an objective, we typically construct a loss function
- This is a function of the model parameters and the data

$$
\begin{aligned}
& L_{S E}=\sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2} \\
& \text { Our objective is achieved when the loss } \\
& \text { function is minimised }
\end{aligned}
$$

Minimising squared error

- Let's write $\mathbf{w}=\left[\begin{array}{ll}b & w\end{array}\right]^{\top}$ and $\mathbf{x}=\left[\begin{array}{ll}1 & x\end{array}\right]^{\top}$ so $f(\mathbf{x})=\hat{y}=\mathbf{w}^{\top} \mathbf{x}$
- We want to find \mathbf{w} that minimises $L_{S E}(\mathbf{w})=\sum_{n}\left(y^{(n)}-\mathbf{w}^{\top} \mathbf{x}^{(n)}\right)^{2}$
- We can express this loss as a vector norm with some rewriting:

$$
\mathbf{y}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
y^{(3)} \\
\vdots \\
y^{(N)}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{c}
\mathbf{x}^{(1) \top} \\
\mathbf{x}^{(2) \top} \\
\mathbf{x}^{(3) \top} \\
\vdots \\
\mathbf{x}^{(N) \top}
\end{array}\right] \quad L_{S E}(\mathbf{w})=\|\mathbf{y}-\mathbf{X w}\|^{2}
$$

Vector calculus to the rescue

$$
L_{S E}(\mathbf{w})=\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2}=(\mathbf{y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{y}-\mathbf{X} \mathbf{w})
$$

- Take the gradient and set to zero to get minimum

$$
\nabla_{\mathbf{w}} L_{S E}=-2 \mathbf{X}^{\top}(\mathbf{y}-\mathbf{X w})=0
$$

- And rearrange

$$
\mathbf{w}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

This function is convex: it only has one extremum which is a minimum

You are not required to do any vector or matrix calculus by hand on this course.
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf is a useful reference for this however.

A line of best fit

Compute $\mathbf{w}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$ where $\mathbf{w}^{*}=\left[\begin{array}{ll}b^{*} & w^{*}\end{array}\right]^{\top}$

This is the intercept and slope of a line that minimises the distances between target and predictions

A probabilistic interpretation

- Let's make the perfectly normal assumption $p(y \mid \mathbf{x})=\mathscr{N}\left(y ; \mathbf{w}^{\top} \mathbf{x}, \sigma^{2}\right)$
- We would then want a model that maximises the probability of our targets across all our data points $\prod p\left(y^{(n)} \mid \mathbf{x}^{(n)}\right)$ a.k.a. the likelihood of our data n
- Maximising likelihood is the same as minimising negative log-likelihood
- After a bit of maths we can write the negative log-likelihood as:

$$
\begin{gathered}
\mathrm{NLL}(\mathbf{w})=\frac{1}{2 \sigma^{2}} \sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}+\frac{N}{2} \log \left(2 \pi \sigma^{2}\right) \\
\begin{array}{c}
\text { Minimising MSE loss is the } \\
\text { same as maximising } \\
\text { likelihood! }
\end{array}
\end{gathered}
$$

Multiple linear regression

- We just performed simple linear regression, mapping $\mathbb{R} \rightarrow \mathbb{R}$
- Multiple linear regression maps $\mathbb{R}^{D>1} \rightarrow \mathbb{R}$
- Let's predict petal width from the other three features in the iris dataset

	sepal length $(\mathbf{c m})$	sepal width $(\mathbf{c m})$	petal length $(\mathbf{c m})$	petal width $(\mathbf{c m})$	species
$\mathbf{0}$	5.1	3.5	1.4	0.2	setosa
$\mathbf{1}$	4.9	3.0	1.4	0.2	setosa
$\mathbf{2}$	4.7	3.2	1.3	0.2	setosa
$\mathbf{3}$	4.6	3.1	1.5	0.2	setosa
$\mathbf{4}$	5.0	3.6	1.4	0.2	setosa
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$\mathbf{1 4 5}$	6.7	3.0	5.2	2.3	virginica
$\mathbf{1 4 6}$	6.3	2.5	5.0	1.9	virginica
$\mathbf{1 4 7}$	6.5	3.0	5.2	2.0	virginica
$\mathbf{1 4 8}$	6.2	3.4	5.4	2.3	virginica
$\mathbf{1 4 9}$	5.9	3.0	5.1	1.8	virginica

Our linear model is a weighted sum of the
features plus a bias

$$
f(\mathbf{x})=\hat{y}=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b
$$

Minimising squared error (again!)

- Our linear model is $f(\mathbf{x})=\hat{y}=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b$
- We want to find the parameters w_{1}, w_{2}, w_{3}, b that minimise $L_{S E}=\sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}$
- Let's write $\mathbf{w}=\left[\begin{array}{llll}b & w_{1} & w_{2} & w_{3}\end{array}\right]^{\top}$ and $\mathbf{x}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & x_{3}\end{array}\right]^{\top}$
- This gives us $f(\mathbf{x})=\hat{y}=\mathbf{w}^{\top} \mathbf{x}$ again
- $L_{S E}=\sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}=\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2}$
- Same solution: $\mathbf{w}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$

Model evaluation: Mean squared error

- We could look at a plot our predictions $\hat{y}^{(1)}, \hat{y}^{(2)}, \ldots, \hat{y}^{(N)}$ against the targets $y^{(1)}, y^{(2)}, \ldots, y^{(N)}$ but it's nice to summarise performance using a score
- That score could be the mean squared error $L_{M S E}=\frac{1}{N} \sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}$

MSE is the average of the distances between predictions and targets

Here MSE is 0.03586 . Low is good

Warning! MSE depends on the scale of your data

Model evaluation: Coefficient of Determination R^{2}

- R^{2} is the default score for regression in sklearn
- It is 1 minus the reduction in error when you use your model's prediction instead of the mean of the targets

$$
R^{2}=1-\frac{\sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}}{\sum_{n}\left(y^{(n)}-\bar{y}\right)^{2}}
$$

- It is maximally 1 (which is best) and can be negative if your predictions are worse than using the target mean!
- It can be seen as a measure of how much of the variance in the targets is explained by the model

Machine Learning is...

"the study of algorithms that can learn from training data in order to make predictions on new data."

Elliot J. Crowley

Test set

- We ultimately want our model to do well on new data
- Models should be evaluated on data that wasn't used for training
- Solution: Evaluate model on a test set (can split dataset into train/test)
- A model that can perform well on test is able to generalise
- The test set must never be used to fit the model

A model that performs

badly on the test set is rubbish!

Evaluation

- Let's split the iris dataset into 80% training and 20% test at random
- Learn weights on train, apply to test
- Train MSE: 0.03536 and Test MSE: 0.03906
- Train $R^{2}: 0.9409$ and Test $R^{2}: 0.9179$

How do we interpret the model?

$$
\left[\begin{array}{c}
W_{2} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right.
$$

- With linear models, the weights tell you the contribution of each variable to the prediction
- But this isn't simple to interpret if the data isn't standardised

Standardised results

- We compute the variable means and standard deviations on the training set
- Then apply these to the training set and the test set!
- The learnt weights are now simple to interpret

Polynomial regression

- Consider the 1D training set of data-target pairs below $\left\{\left(x^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$
- The relationship between data and targets is curvilinear
- Simple linear regression produces a model that underfits to the data
- The model doesn't have the capacity to capture the way the data varies

Polynomial regression

- Let's try fitting a polynomial $\hat{y}=f(x)=b+\sum_{m=1}^{M} w_{m} x^{m}$
- Using $M=3$ we have $f(x)=b+w_{1} x+w_{2} x^{2}+w_{3} x^{3}$ and can get a good fit
- The model is still linear in the weights

How do we fit this function?

- Our function is $\hat{y}=f(x)=b+\sum_{m=1}^{M} w_{m} x^{m}$

1. Define $\phi(\mathbf{x})=\left[\begin{array}{lllll}1 & x & x^{2} & \ldots & x^{M}\end{array}\right]^{\top}$
2. Write $\mathbf{w}=\left[\begin{array}{lllll}b & w_{1} & w_{2} & \ldots & w^{M}\end{array}\right]^{\top}$

- We get $f(\mathbf{x})=\hat{y}=\mathbf{w}^{\top} \phi(\mathbf{x})$. This looks familiar...
- It's the same as before except we have a feature transformation $\phi(\mathbf{x})$

Minimising squared error (yet again)

- Our linear model is $f(\mathbf{x})=\hat{y}=\mathbf{w}^{\top} \phi(\mathbf{x})$
- We want to find the \mathbf{w} that minimise $L_{S E}=\sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}$
- Define $\mathbf{\Phi}=\left[\begin{array}{c}\phi\left(\mathbf{x}^{(1)}\right)^{\top} \\ \phi\left(\mathbf{x}^{(2)}\right)^{\top} \\ \phi\left(\mathbf{x}^{(3)}\right)^{\top} \\ \vdots \\ \left.\vdots\left(\mathbf{x}^{(}\right)\right)^{\top}\end{array}\right]$ then we get $L_{S E}=\sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}=\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{w}\|^{2}$ $\left.\left.\phi\left(\mathbf{x}^{(N)}\right)^{\top}\right)\right]$

View Φ and \mathbf{X} as interchangeable here.

- Extremely similar solution: $\mathbf{w}^{*}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}$

Varying M

Overfitting

- These models have overfit to the training data
- We want our models to generalise to test data -these don't!
- Spoilers: $y=\sin ((x-a) / b)+\mathcal{N}\left(0,0.25^{2}\right)$
- The models have too much capacity, and are latching on to the noise

Regularisation

- We ultimately want to maximise test performance i.e. minimise test error
- The model should have the capacity to represent the function we care about
- But high capacity models tend to overfit
- Regularisation techniques combat overfitting by making the model simpler

L2 regularisation

- Overfitted models tend to have large weights

$$
y=30.38 x^{19}-18.83 x^{18}-313.41 x^{17}+\ldots
$$

- We can regularise our model by penalising large weight values
- Let's add a term to our loss function that is small when weights are small

$$
L_{\text {ridge }}(\mathbf{w})=\underbrace{\|\mathbf{y}-\mathbf{\Phi} \mathbf{w}\|^{2}}_{S E}+\underbrace{\lambda\|\mathbf{w}\|^{2}}_{\text {regularisation }}
$$

[^0]
Ridge regression

$$
L_{\text {ridge }}(\mathbf{w})=\underbrace{\|\mathbf{y}-\mathbf{\Phi} \mathbf{w}\|^{2}}_{S E}+\underbrace{\lambda\|\mathbf{w}\|^{2}}_{\text {regularisation }} \text { where }\|\mathbf{w}\|^{2}=\mathbf{w}^{\top} \mathbf{w}
$$

- λ is a hyperparameter that tells us how important regularisation is
- Let's take the gradient and set to zero to get the optimal weights

$$
\begin{aligned}
& \nabla_{\mathbf{w}} L_{\text {ridge }}=-2 \boldsymbol{\Phi}^{\top}(\mathbf{y}-\boldsymbol{\Phi} \mathbf{w})+2 \lambda \mathbf{w}=0 \\
& \mathbf{w}^{*}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}+\lambda I\right)^{-1} \mathbf{\Phi}^{\top} \mathbf{y}
\end{aligned}
$$

Varying λ for $M=19$

The validation set

- Our goal is to perform well on the test set. Can we try different values of λ and pick the one that maximises test performance?
- No! This would be using the test set to select the model
- Instead, we split the dataset three-ways: train, validation, test
- The validation set is used for model selection
- i.e. we can evaluate models with different λ and select the one that does best on validation

Hyperparameter tuning with grid search

- Create a list of λ values and for each value fit a model on the training set
- Evaluate each model on the validation set (e.g. with MSE or R^{2})
- Select the model that performs best on validation then evaluate on test

Grid search

- We create a grid of possible values for each hyperparameter
- We then train a model for each grid element, and pick the model that performs best on the validation set. This is model selection
- With one hyperparameter, the grid is 1D, with two it's 2D and so on
- This can quickly get very expensive!

Imagine we have hyperparameters α and β. Let's search over $\alpha=\{0,1\}$ and $\beta=\{0.1,1,10\}$

Other feature transformations are available

- We can design our own $\phi(\mathbf{x}) ; \boldsymbol{\Phi}$ is often referred to as the design matrix
- Each element could be a Gaussian centred on each training point

$$
\phi(x)=\left[\begin{array}{lllll}
e^{-\left(x-x^{(1)}\right)^{2} / \sigma^{2}} & e^{-\left(x-x^{(1)}\right)^{2} / \sigma^{2}} & e^{-\left(x-x^{(2)}\right)^{2} / \sigma^{2}} & \ldots & \left.e^{-\left(x-x^{(N)}\right)^{2} / \sigma^{2}}\right]^{\top}
\end{array}\right.
$$

- Here, σ is an additional hyperparameter

Lasso regression

$$
L_{\text {lasso }}(\mathbf{w})=\underbrace{\frac{1}{2 N}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2}}_{M S E}+\underbrace{\lambda|\mathbf{w}|}_{\text {regularisation }}
$$

Remember that we can interchange $\mathbf{\Phi}$ and \mathbf{X} in these equations

- Very similar to ridge regression except the SE term has been scaled and the regularisation term is a 1 -norm
- 1-norm encourages sparsity in \mathbf{w} which is a form of feature selection

The minimum occurs at one of the points where the contours of the two terms are at a tangent

Such points are more likely to occur at the corners of the 1 -norm contours

Optimisation

- Finding the weights that minimise a loss function on training data is an optimisation problem minimise $L(\mathbf{w})$ with solution $\mathbf{w}^{*}=\arg \min L(\mathbf{w})$

W
w

- This was simple for $L_{\text {ridge }}(\mathbf{w})$ which is convex and differentiable
- We just compute $\nabla_{\mathbf{w}} L_{\text {ridge }}$ and set to zero
- However, $L_{\text {lasso }}(\mathbf{w})$ is non-differentiable

$$
L_{\text {lasso }}(\mathbf{w})=\underbrace{\frac{1}{2 N}\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{w}\|^{2}}_{M S E}+\underbrace{\lambda|\mathbf{w}|}_{\text {regularisation }}
$$

Convexity

- Convex functions have one extremum which is a minimum. This is very useful for optimisation!

- A function of one variable is convex if a line drawn between any two points on the function doesn't fall below the function

Lasso is convex

- $|w|$ is convex (as is $|\mathbf{w}|$): it clearly has a minimum at $w=0$.
- It not being differentiable doesn't change this

- The sum of two convex functions is convex

$$
L_{\text {lasso }}(\mathbf{w})=\underbrace{\frac{1}{2 N}\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{w}\|^{2}}_{M S E}+\underbrace{\lambda|\mathbf{w}|}_{\text {regularisation }}
$$

- $L_{\text {lasso }}(\mathbf{w})$ is convex, we just need to find its minimum

Subderivatives

- $g(w)=|w|$ is piecewise differentiable

- We can evaluate the gradient at any point (except $w=0$)
- This is all we need to do to perform gradient descent (GD)

Gradient descent (GD) intuition

- We have a function $L(\mathbf{w})$ and we want to find $\mathbf{w}^{*}=\arg \min L(\mathbf{w})$ w
- Let's initialise \mathbf{w} at random and call it $\mathbf{w}_{t=0}$
- The gradient at $\mathbf{w}_{t=0}: \nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=0}\right)$ tells us locally the direction we can move $\mathbf{w}_{t=0}$ to most increase the function
- Move in the opposite direction!

$$
\mathbf{w}_{t=1}=\mathbf{w}_{t=0}-\alpha \nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=0}\right)
$$

Gradient descent (GD) rationale

- Consider the loss at $\mathbf{w}_{t=i} L\left(\mathbf{w}_{t=i}\right)$
- Let's take a small step in weight space, so $\mathbf{w}_{t=i+1}=\mathbf{w}_{t=i}+\Delta$
- Because this is small we can approximate $L\left(\mathbf{w}_{t=i+1}\right)$ using a 1st order Taylor expansion
- $L\left(\mathbf{w}_{t=i+1}\right)=L\left(\mathbf{w}_{t=i}+\Delta\right) \approx L\left(\mathbf{w}_{t=i}\right)+\nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=i}\right)^{\top} \Delta$
- If we set $\Delta=-\alpha \nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=i}\right)$ then $L\left(\mathbf{w}_{t=i+1}\right) \leq L\left(\mathbf{w}_{t=i}\right)$ as long as α is small
- We can therefore keep taking steps to minimise loss

Gradient descent (GD) algorithm

Goal: We have a function $L(\mathbf{w})$ and we want to find $\mathbf{w}^{*}=\arg \min L(\mathbf{w})$
W

- Initialise \mathbf{W} as $\mathbf{w}_{t=0}$
- For i in range(T):

1. Compute $\nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=i}\right)$
2. Update $\mathbf{w}_{t=i+1}=\mathbf{w}_{t=i}-\alpha \nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=i}\right)$

Optimisation algorithms

- Using an optimisation algorithm to learn the weights that minimise a loss function on training data is known as training or fitting or learning!
- There are many optimisation algorithms; some work better than others for different methods
- We will only detail variations of gradient descent on this course
- Sklearn will default to whatever optimiser tends to work best for a method
- Please be happy using optimisation algorithms that you haven't learnt about, and if you're not - go find out how they work!

Summary

- We have learnt about linear regression
- We have reasoned about the need for a test set for evaluation
- We have discovered how regularisation can prevent overfitting
- We have learnt how a validation set can be used to perform model selection
- We have found out what convex functions are
- We have explored gradient descent for optimising convex functions

[^0]: Probabilistic interpretation: We are placing a Gaussian prior on the weights and performing MAP inference

