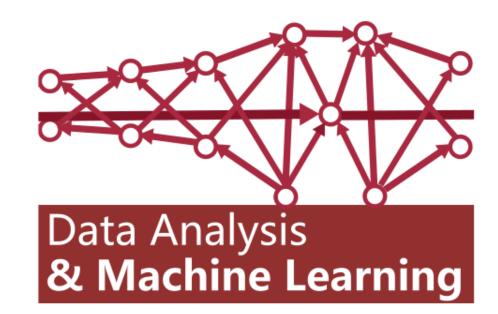
Data Analysis and Machine Learning 4 (DAML) Week 6: Linear models for classification

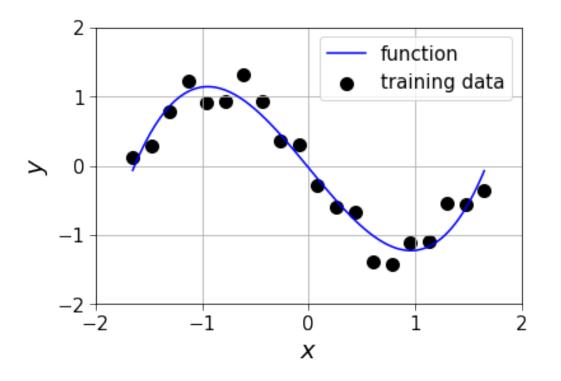
Elliot J. Crowley, 26th February 2024

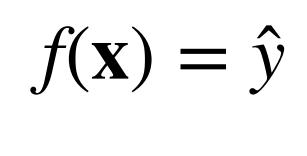


of EDINBURGH

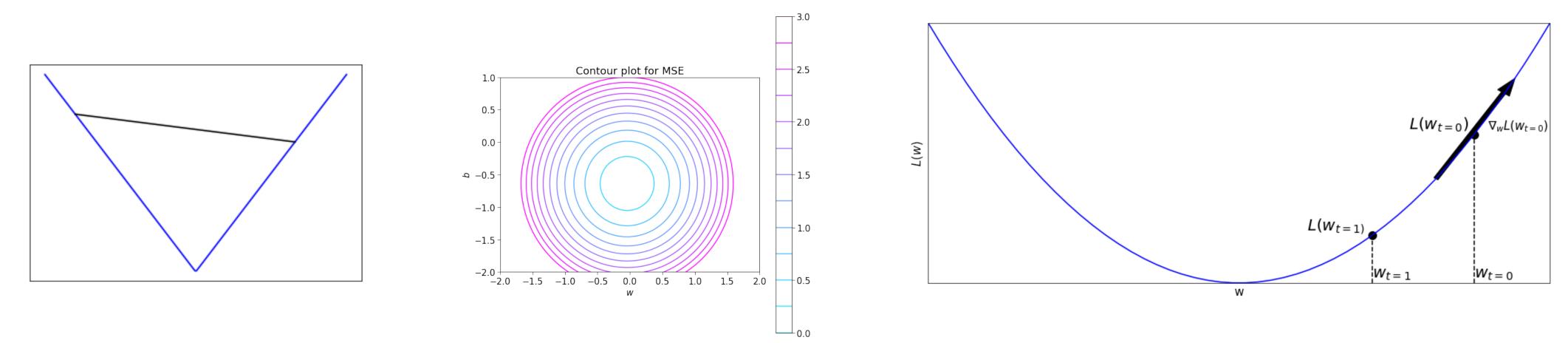
Recap

We learned about different types of linear regression and regularisation





We looked at convex functions and gradient descent



 $f(\mathbf{x}) = \hat{y} = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x})$

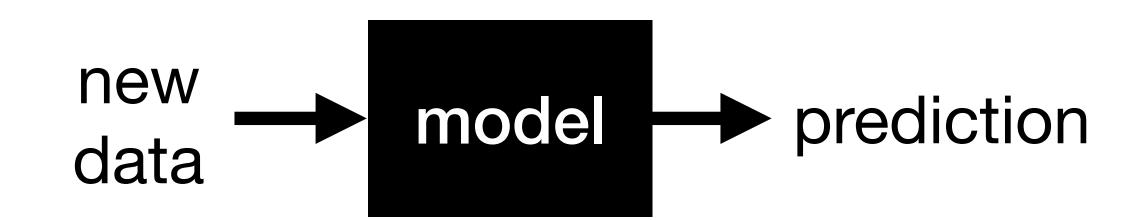
 $L_{ridge}(\mathbf{w}) = \|\mathbf{y} - \mathbf{\Phi}\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|^2$

SE

regularisation

Supervised Learning

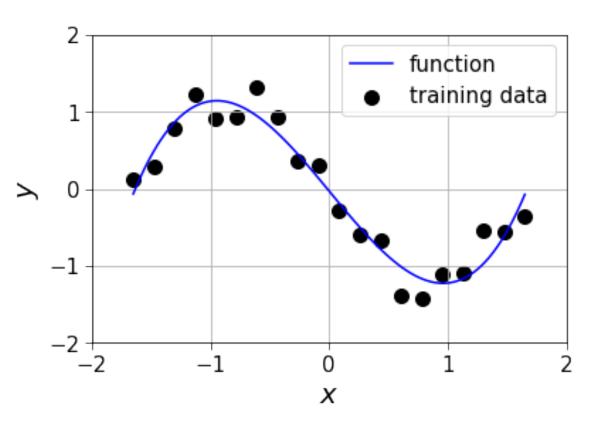
• We want a model that takes in a new data point and outputs a prediction



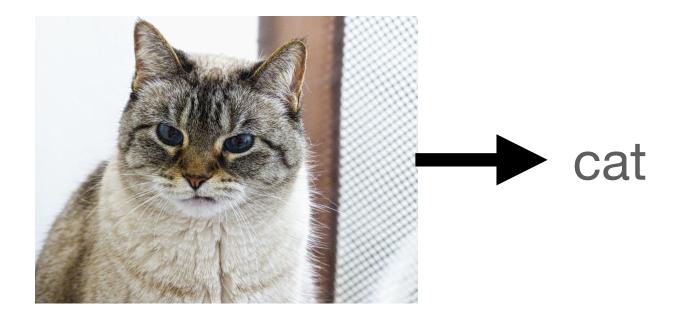
- For the model to be accurate it must first learn from training data
- Often, models are parameterised functions and learning = finding the best parameters
- Training data is a set of existing data points that have been **labelled**
- The label says what the prediction for that data point should be

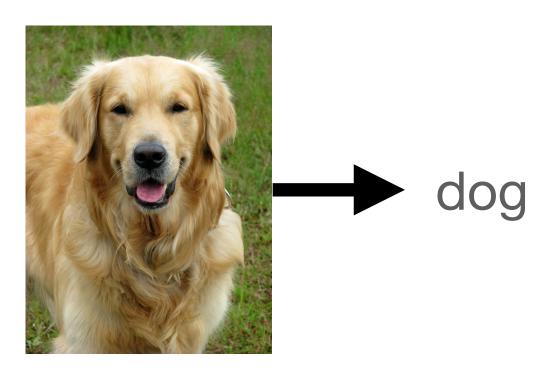
Two canonical problems in supervised learning

Regression: Given input data, predict a continuous output



Classification: Given input data, predict a distinct category





Linear models for classification

Why linear models?

- They are simple and intuitive
- They are interpretable
- They use vectors and matrices (computers love these)
- They work well in many scenarios

Slide inspired by https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition

The classification problem

- Our training set consists of N data point-target pairs $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$
- Data points $\mathbf{x} \in \mathbb{R}^{D}$ are column vectors, targets are class labels $y \in \mathbb{Z}_{< K}^{+} = \{0, 1, \dots, K-1\}$
- i.e. each data point has been labeled as belonging to 1 of K classes
- Objective: We want a model that classifies our training data correctly
- **Objective:** We want a model that classifies our held-out data correctly

- The most common way to quantify classification performance is accuracy
 - This is simply the fraction or % of classifications that are correct

A linear classifier is a linear model + a threshold function

- We will use a linear model as we did for regression $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$
- For now we will consider **binary classification**: $y \in \{0,1\}$ or $y \in \{-1,1\}$
- For regression, we used $f(\mathbf{x}) \in \mathbb{R}$ as our target prediction but we can't do this for classification because the class labels are discrete
- Instead we will supply a **threshold function** that maps $f(\mathbf{x})$ to a discrete class prediction \hat{y}

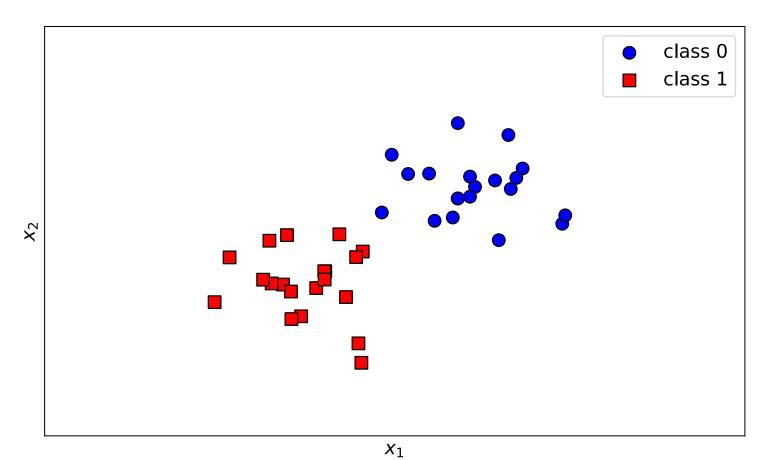
• This could be
$$\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) > \\ 0 & \text{if } f(\mathbf{x}) < \end{cases}$$

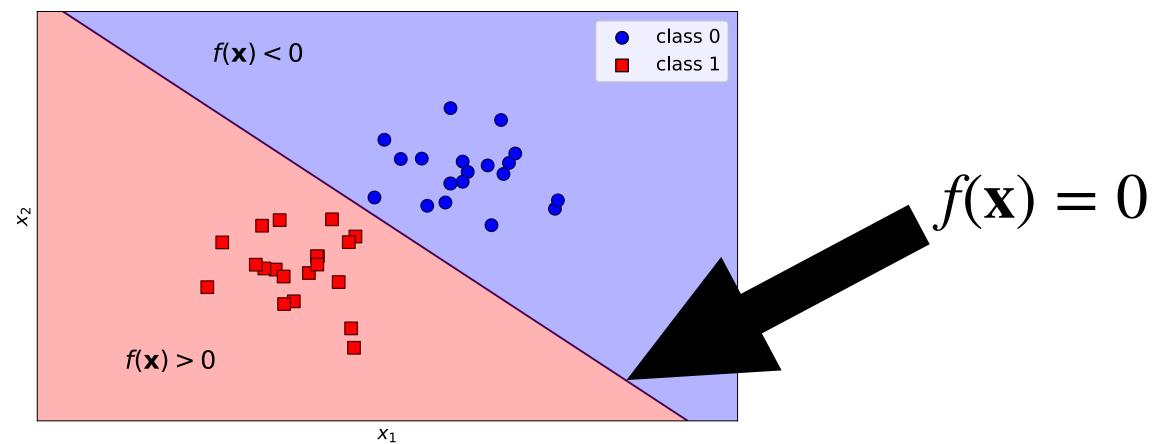
> 0 < 0

We can call $f(\mathbf{x})$ the classifier score for \mathbf{x}

Linear classifier decision boundary in 2D

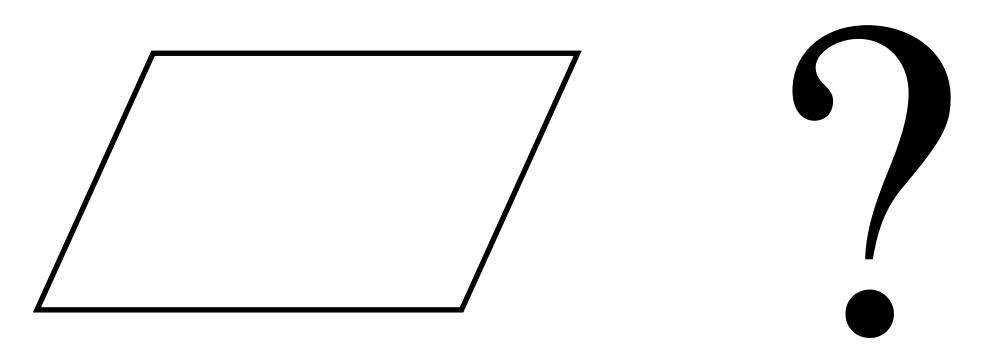
- Consider a training set $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$ with $\mathbf{x} \in \mathbb{R}^2$ and $y \in \{0, 1\}$
- We have $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ where $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\mathsf{T}}$ and $\mathbf{w} = \begin{bmatrix} w_1 & w_2 \end{bmatrix}^{\mathsf{T}}$
- Let's use the threshold function $\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) > 0 \\ 0 & \text{if } f(\mathbf{x}) < 0 \end{cases}$
- The line $f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + b = 0$ forms the decision boundary of the classifier





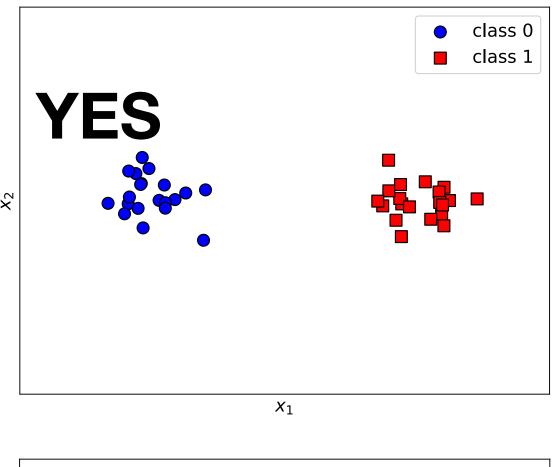
Decision boundary are hyperplanes

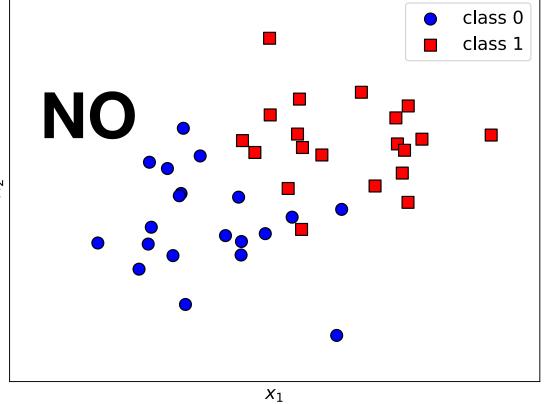
- For $\mathbf{x} \in \mathbb{R}^D$ the decision boundary of a linear classifier is in D-1
- In 1D the decision boundary is a point
- In 2D the decision boundary is a line
- In 3D the decision boundary is a plane
- In 4D and above the decision boundary is a hyperplane we can't visualise but all the maths still works (:



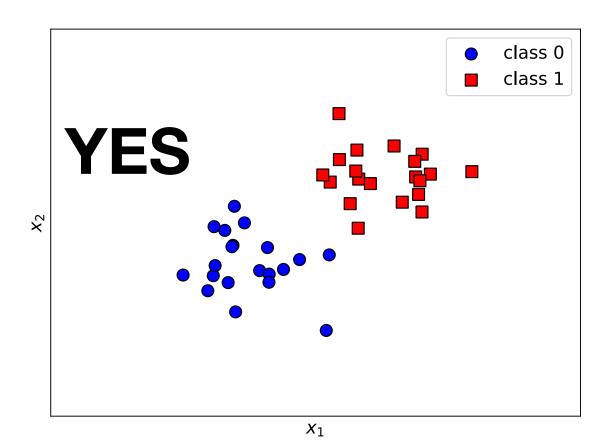
Linear separability

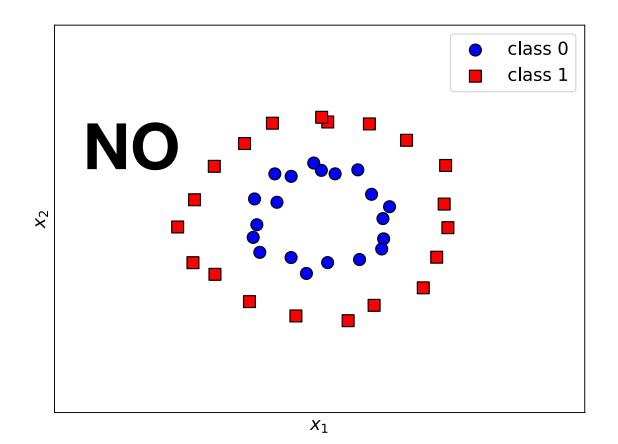
completely separates points from both classes





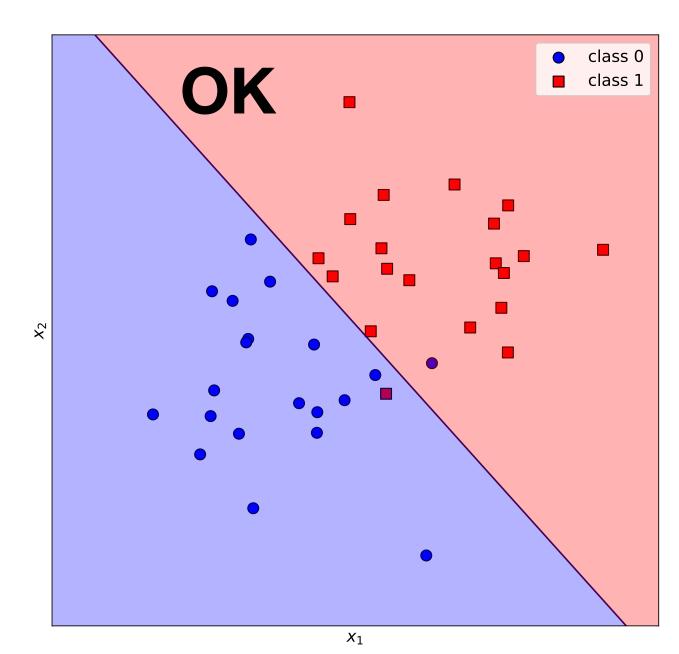
Our training data is linearly separable if we are able to draw a hyperplane that

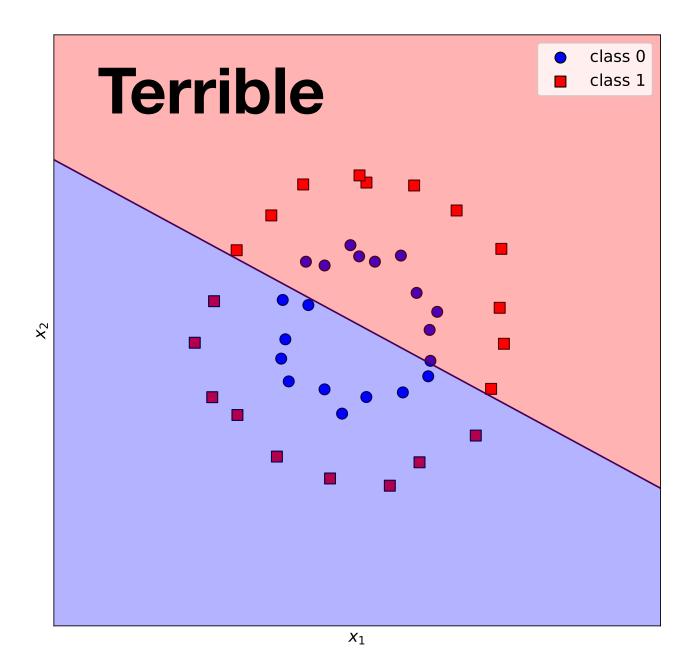




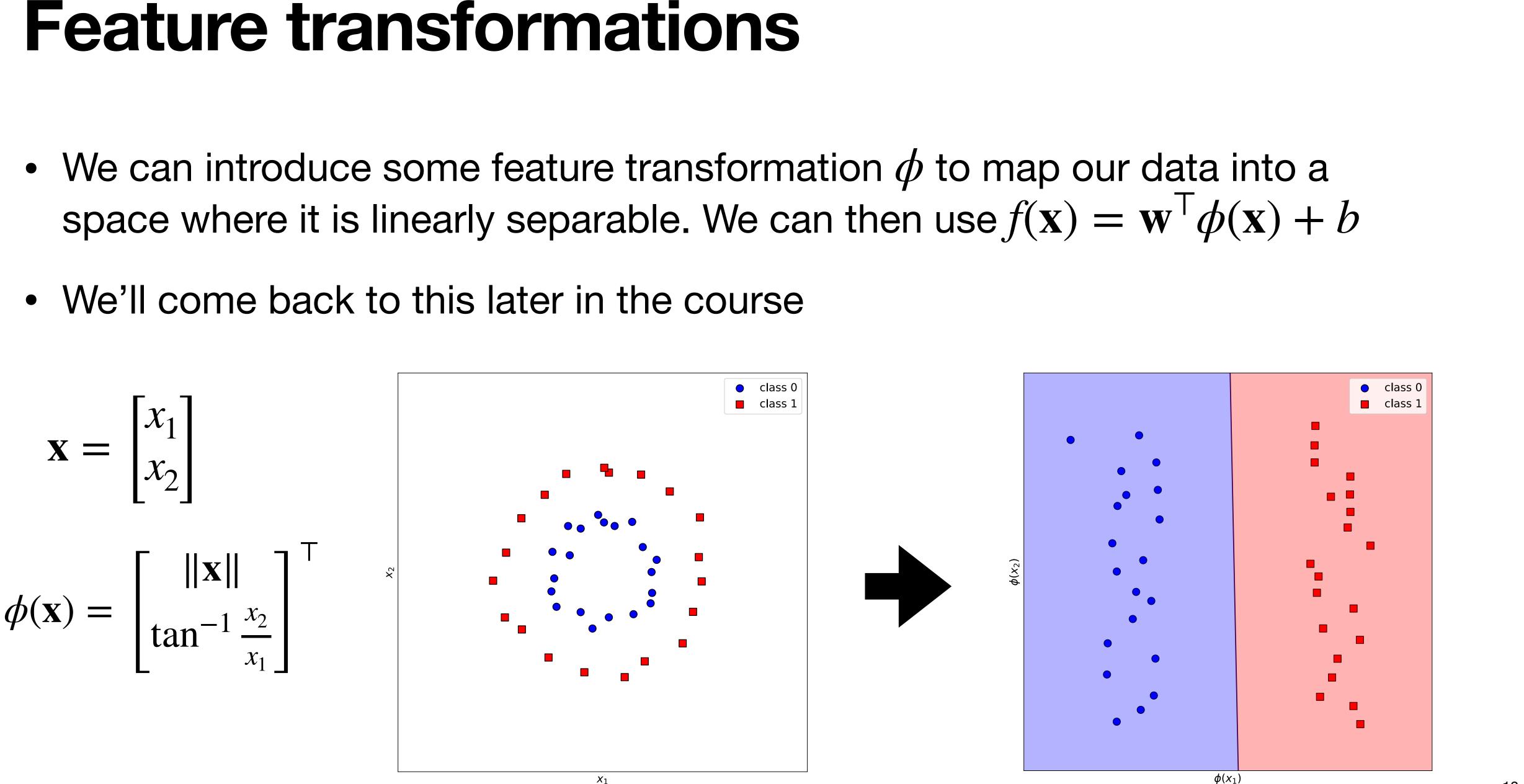
Linear separability continued

- If training data isn't linearly separable, a linear classifier can't produce a decision boundary that perfectly classifies the training data
- You can still get good solutions if a hyperplane can separate most data
- If it can't then a linear classifier won't be any good





- space where it is linearly separable. We can then use $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + b$



Fitting a linear classifier

- For the classifier to be any good we learn the model parameters w, b using training data
- There are lots of ways to do this but they all largely boil down to minimising different loss functions that involve classifier scores $f(\mathbf{x})$ and labels y
- The loss functions rarely involve discrete predictions as the threshold function has a gradient of zero everywhere it is defined!
- We are going to cover logistic regression in detail and then look at some other approaches

Logistic Regression

First... treat classification as regression

- Consider a training set $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$ where $\mathbf{x} \in \mathbb{R}^D$ and $y \in \{0, 1\}$
- Let's treat y as continuous $y \in \mathbb{R}$: it just happens to be 0/1 for training data
- We can use $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ to predict this "continuous" label
- We could just minimise $L_{MSE} = \frac{1}{N} \sum_{N=1}^{N} \sum_{n=1}^{$

• We can just use e.g. $\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) > 0.5 \\ 0 & \text{if } f(\mathbf{x}) < 0.5 \end{cases}$ as our threshold function

• This is known as label regression. Our $f(\mathbf{x})$ isn't particularly meaningful

$$\sum (y^{(n)} - f(\mathbf{x}^{(n)}))^2$$

n

Logistic Regression

- Probabilities are meaningful as they quantify uncertainty
- We want to predict $p(y = 1 | \mathbf{x})$: the probability that \mathbf{x} belongs to class 1
- We can't predict this with our linear model $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ however
- This is because probabilities must lie between 0 and 1 and $f(\mathbf{x})$ is unbounded
- Let's instead predict an unbounded quantity that is related to $p(y = 1 | \mathbf{x})$

$$f(\mathbf{x}) = \log \frac{p(y = 1 | \mathbf{x})}{1 - p(y = 1 | 1)}$$

The sigmoid function

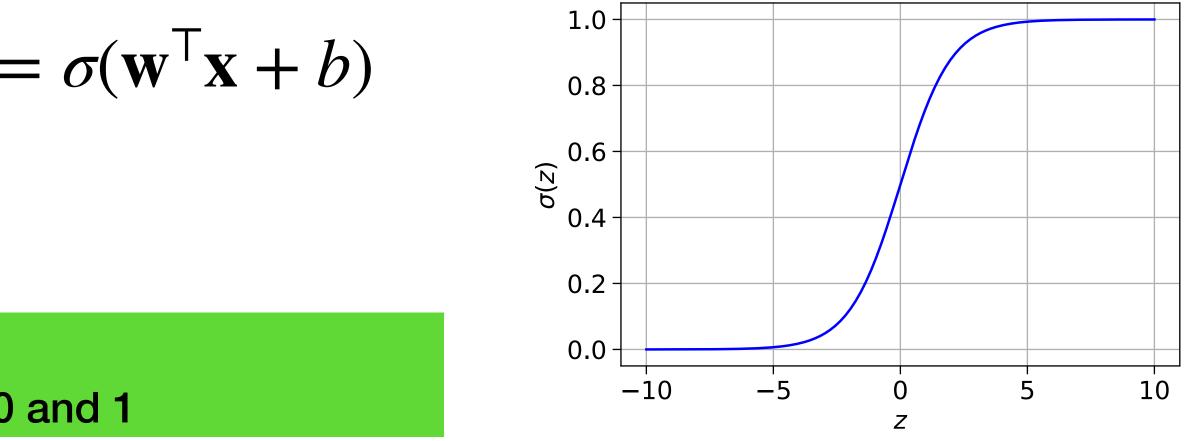
In logistic regression our model predicts the log-odds for class 1•

$$f(\mathbf{x}) = \log \frac{p(y = 1 | \mathbf{x})}{1 - p(y = 1 | \mathbf{x})}$$

• We can rearrange to express $p(y = 1 | \mathbf{x})$ in terms of log-odds

$$p(\mathbf{y} = 1 | \mathbf{x}) = \frac{1}{1 + e^{-f(\mathbf{x})}} = \sigma(f(\mathbf{x})) =$$

 σ is the sigmoid function. It squashes numbers to be between 0 and 1



Discrete class predictions from log-odds

- We can convert log-odds to probabilities through $p(y = 1 | \mathbf{x}) = \sigma(f(\mathbf{x}))$
- It follows that $p(y = 0 | \mathbf{x}) = 1 \sigma(f(\mathbf{x}))$ as there are only two classes
- What threshold function should we use to make a discrete class prediction \hat{y} ?
- The obvious approach is to use $\hat{y} = \begin{cases} 1 & \text{if } p(y = 1 | \mathbf{x}) \ge 0.5 \\ 0 & \text{if } p(y = 1 | \mathbf{x}) < 0.5 \end{cases}$
- $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b) = 0.5$ when $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ which is a hyperplane
- We can rewrite the above as $\hat{y} = \begin{cases} 1 \\ 0 \end{cases}$

$$if f(\mathbf{x}) \ge 0$$
$$if f(\mathbf{x}) < 0$$

Maximum likelihood estimation

- We can write $p(y | \mathbf{x}) = \sigma(f(\mathbf{x}))^y (1)$
- We can then write an expression for the likelihood of our data $p(y^{(n)} | \mathbf{x}^{(n)}) = \sigma(f(\mathbf{x}^{(n)}))^{y^{(n)}}$
- (divided by the number of data points)

n

n

NLL(**w**, b) =
$$-\frac{1}{N} \sum_{n} \left[y^{(n)} \log \sigma(f(\mathbf{x}^{(n)})) + (1 - y^{(n)}) \log(1 - \sigma(f(\mathbf{x}^{(n)}))) \right]$$

$$-\sigma(f(\mathbf{x})))^{1-y}$$

$$(1 - \sigma(f(\mathbf{x}^{(n)})))^{1-y^{(n)}})$$

Maximising likelihood is the same as minimising negative log-likelihood

NLL is the log loss

NLL(**w**, b) =
$$-\frac{1}{N} \sum_{n} \left[y^{(n)} \log \sigma(f(\mathbf{x}^{(n)})) + (1 - y^{(n)}) \log(1 - \sigma(f(\mathbf{x}^{(n)}))) \right]$$

• We can write $p(y = 1 | \mathbf{x}) = \sigma(f(\mathbf{x}^{(n)}))$ as $p^{(n)}$ to express this more succinctly:

$$L_{log} = -\frac{1}{N} \sum_{n} \left[y^{(n)} \log p^{(n)} + (1 - y^{(n)}) \log(1 - p^{(n)}) \right]$$

- maximum likelihood estimation (MLE)

• It is also know as the logistic loss, or the cross-entropy loss. Minimising it is performing

• Cross-entropy is a quantity that crops up in information theory. It measures how much the probabilities produced by our model differ from the true probabilities (so low = good)

Log loss

$$L_{log} = -\frac{1}{N} \sum_{n} \left[y^{(n)} \log p^{(n)} + (1 - y^{(n)}) \log(1 - p^{(n)}) \right]$$

- This loss is convex for a linear classifier
- We can use a gradient-based optimiser to solve minimise L_{log} using lacksquare \mathbf{W}, b

$$\nabla_{\mathbf{w}} L_{log} = -\frac{1}{N} \sum_{n} \left(y^{(n)} - p^{(n)} \right) \mathbf{x}^{(n)}$$
$$\nabla_{b} L_{log} = -\frac{1}{N} \sum_{n} \left(y^{(n)} - p^{(n)} \right)$$

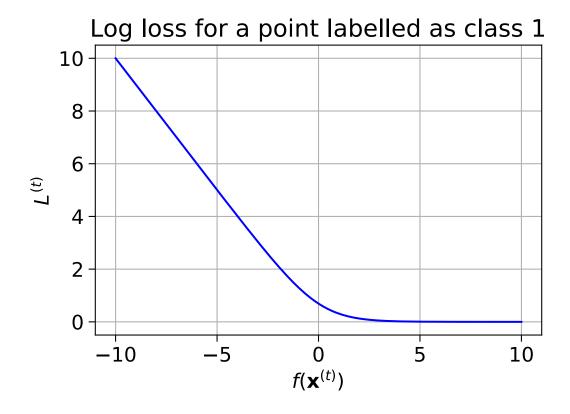
n)

Stochastic Gradient descent (SGD) algorithm

- Goal: We want to minimise the training loss of
- We can write the loss as an average of per exa
- Initialise w and b
- For epoch in range(*E*):
 - Shuffle **D**
 - For n in range(N):
 - Compute $\nabla_{\mathbf{w}} L^{(n)}$ and $\nabla_{h} L^{(n)}$
 - Update $\mathbf{w} \leftarrow \mathbf{w} \alpha \nabla_{\mathbf{w}} L^{(n)}$ and $b \leftarrow b$ -

our model on
$$\mathfrak{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$$

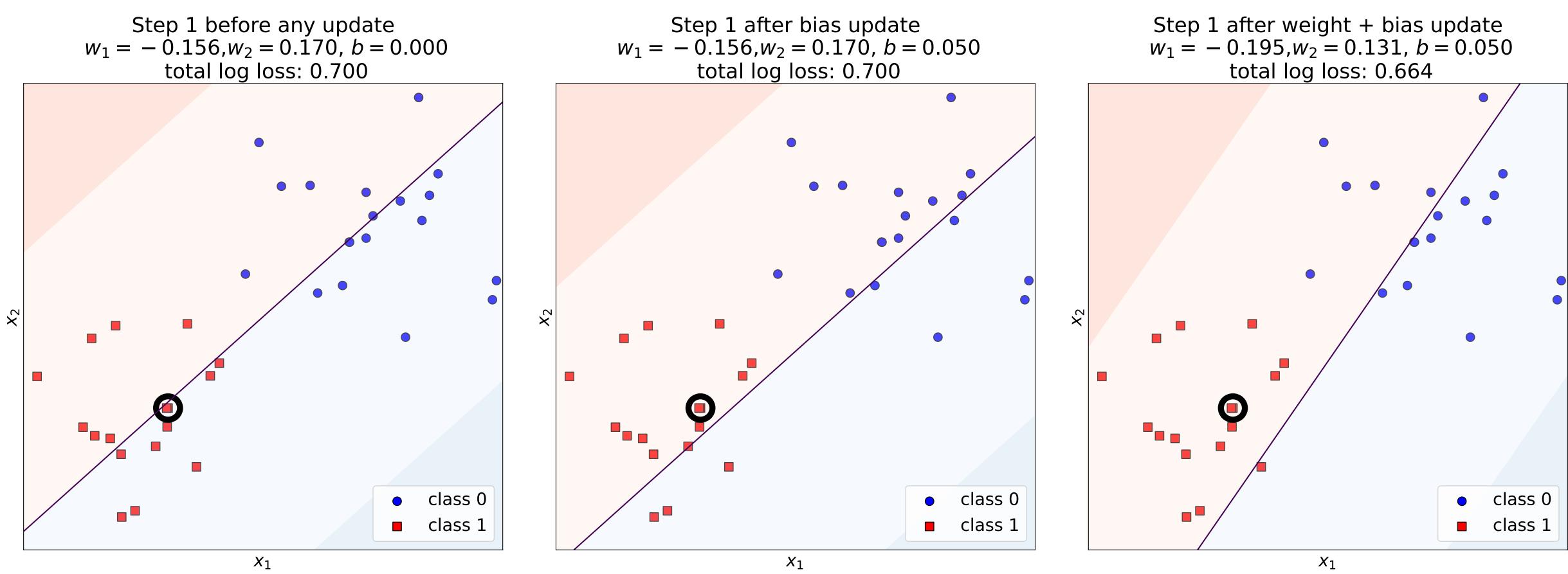
ample losses $\frac{1}{N} \sum_{n} L(y^{(n)}, \mathbf{x}^{(n)}, \mathbf{w}, b) = \frac{1}{N} \sum_{n} L^{(n)}$



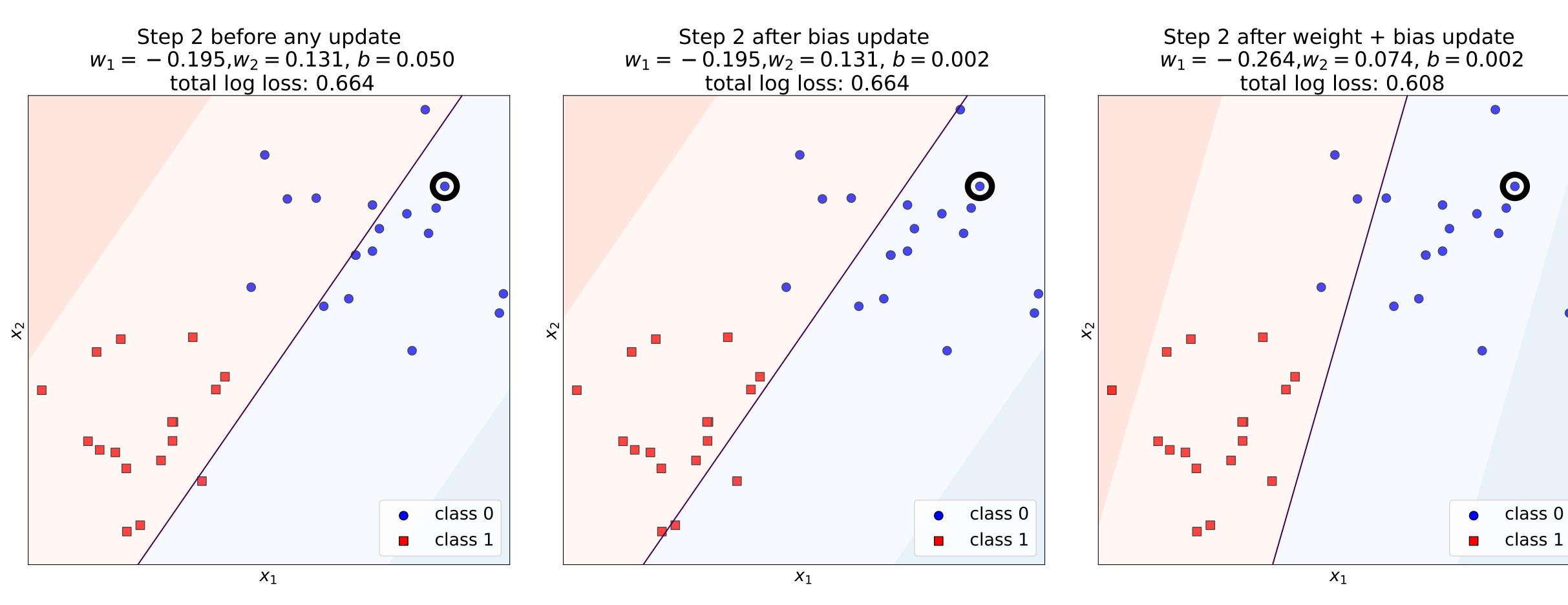
This is what sklearn does. There are lots of variants. See https://sebastianraschka.com/faq/ docs/sgd-methods.html

$$-\alpha \nabla_b L^{(n)}$$

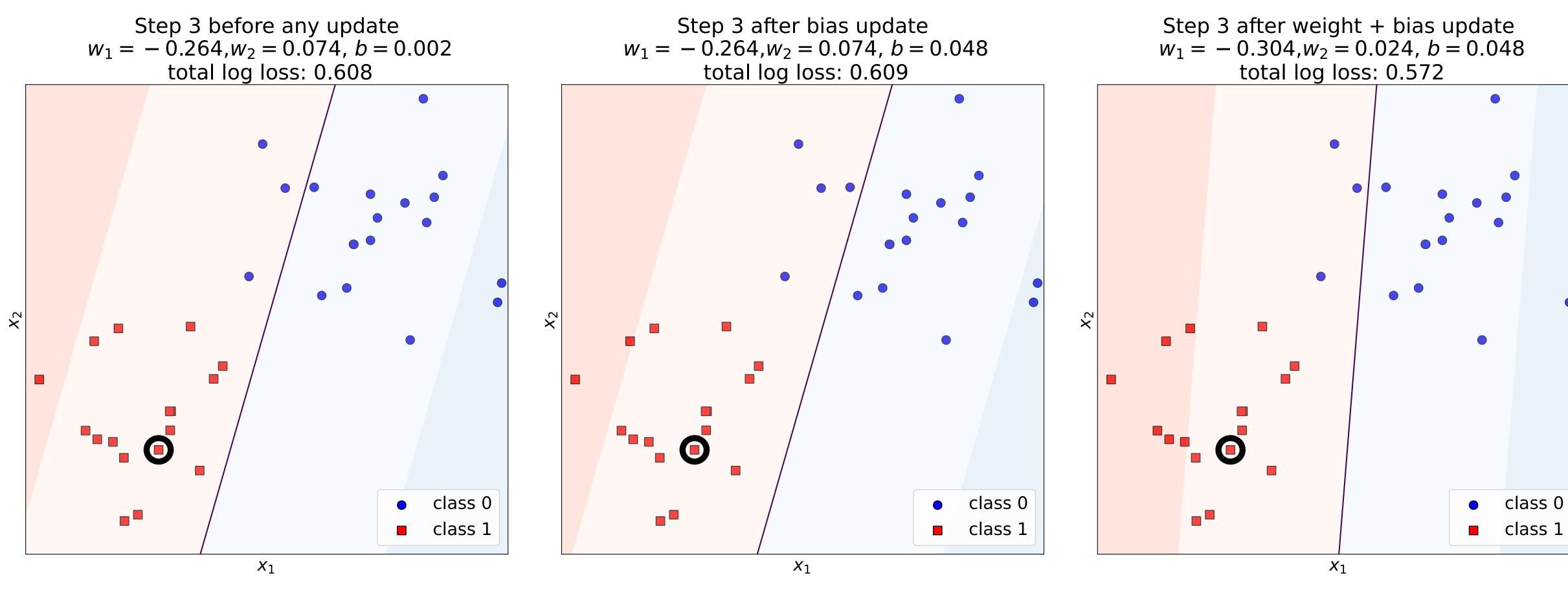
SGD Update 1



SGD Update 2

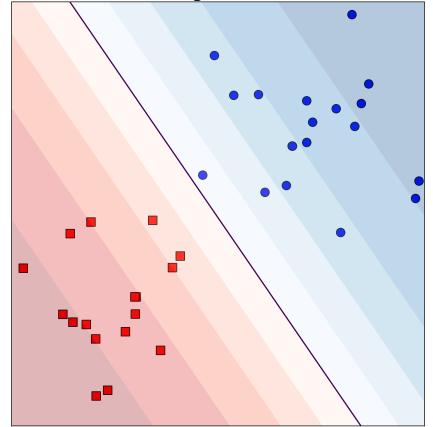


SGD Update 3

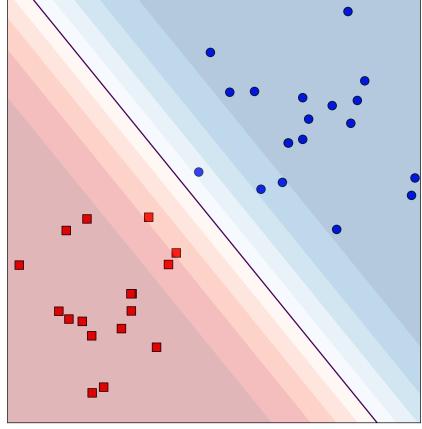


SGD for 10 epochs

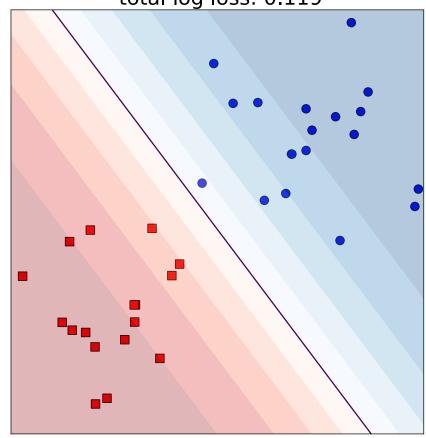
After Epoch 1: $w_1 = -1.092, w_2 = -0.770, b = -0.028$ total log loss: 0.189



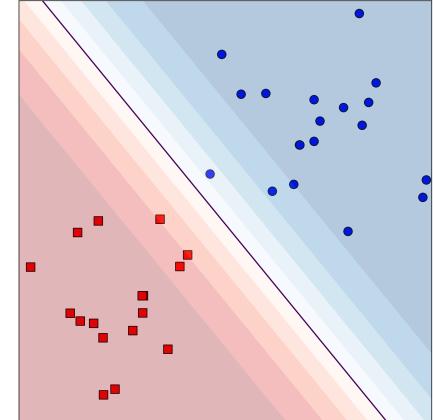
After Epoch 6: $w_1 = -2.157, w_2 = -1.800, b = -0.191$ total log loss: 0.058

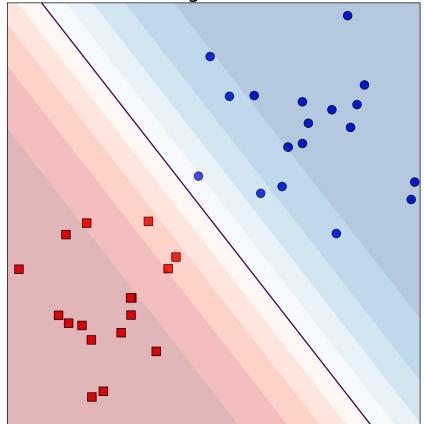


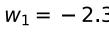
After Epoch 2: $w_1 = -1.472, w_2 = -1.137, b = -0.080$ total log loss: 0.119

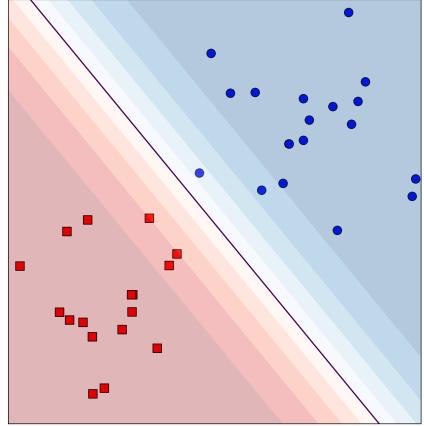


After Epoch 7: $w_1 = -2.261, w_2 = -1.900, b = -0.206$ total log loss: 0.053





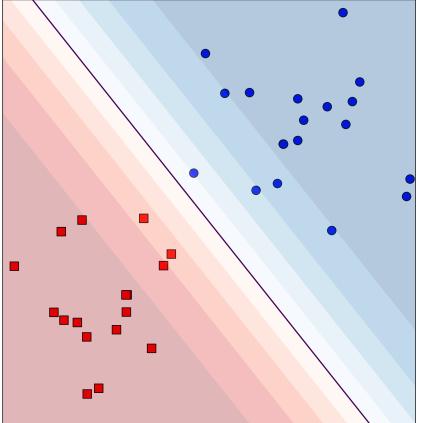




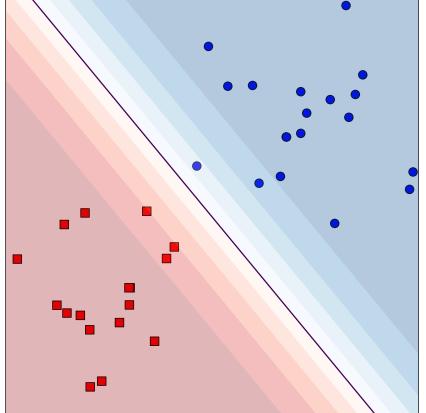
After Epoch 3: $w_1 = -1.717, w_2 = -1.375, b = -0.112$ total log loss: 0.090

After Epoch 8: $w_1 = -2.353, w_2 = -1.988, b = -0.224$ total log loss: 0.049

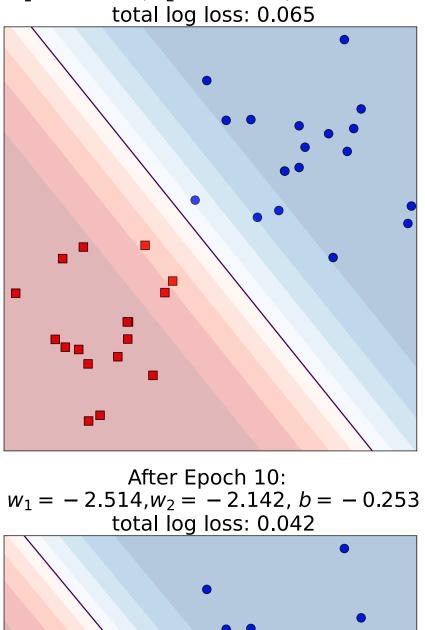
After Epoch 4: $w_1 = -1.892, w_2 = -1.545, b = -0.144$ total log loss: 0.075

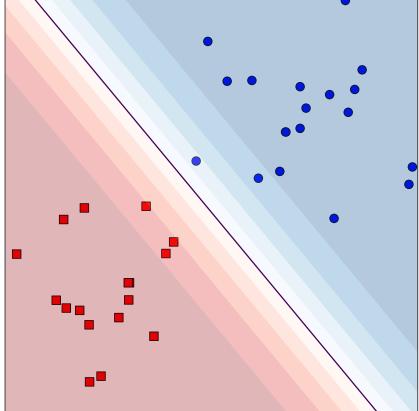


After Epoch 9: $w_1 = -2.439, w_2 = -2.070, b = -0.237$ total log loss: 0.045

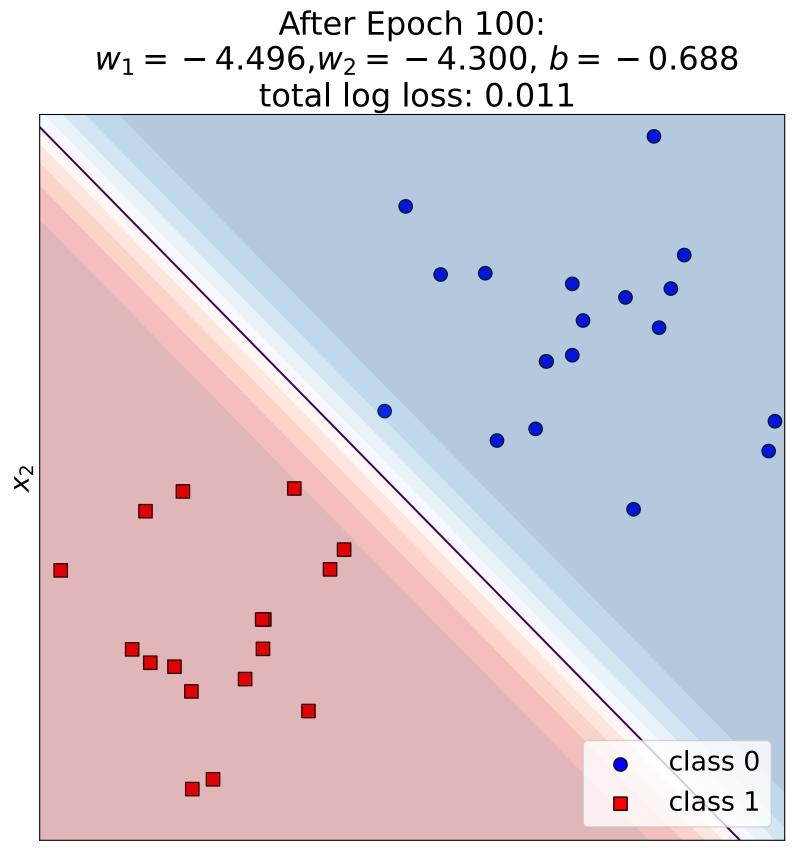


After Epoch 5: $w_1 = -2.038, w_2 = -1.684, b = -0.170$

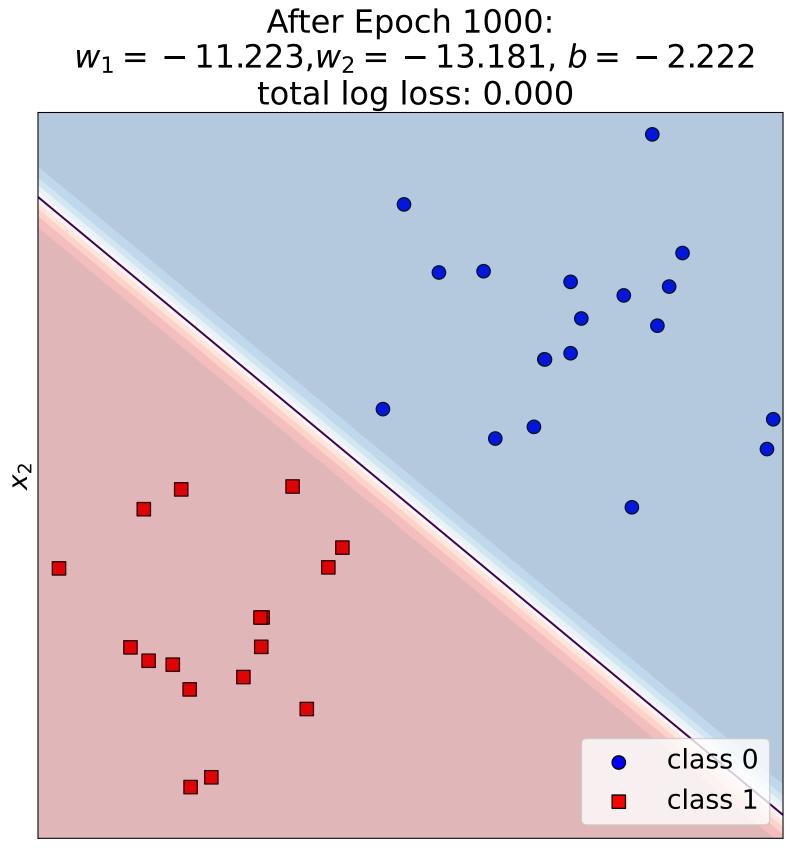




"Don't get cocky!"



 x_1



Regularisation

- We are seeing a model that is far too confident near the boundary. It is overfitting to the training data
- And look... its weights are large!
- We can add regularisation as we did for regression

$$L_{total} = \begin{array}{c} L_{log} + \frac{\lambda}{2} \\ \end{array}$$

classification

regularisation

 \mathbf{W}

We can use the validation set to find the optimal λ

 $w_1 = -4.496, w_2 = -4.300, b = -0.688$ total log loss: 0.011 class 0 class 1 X_1

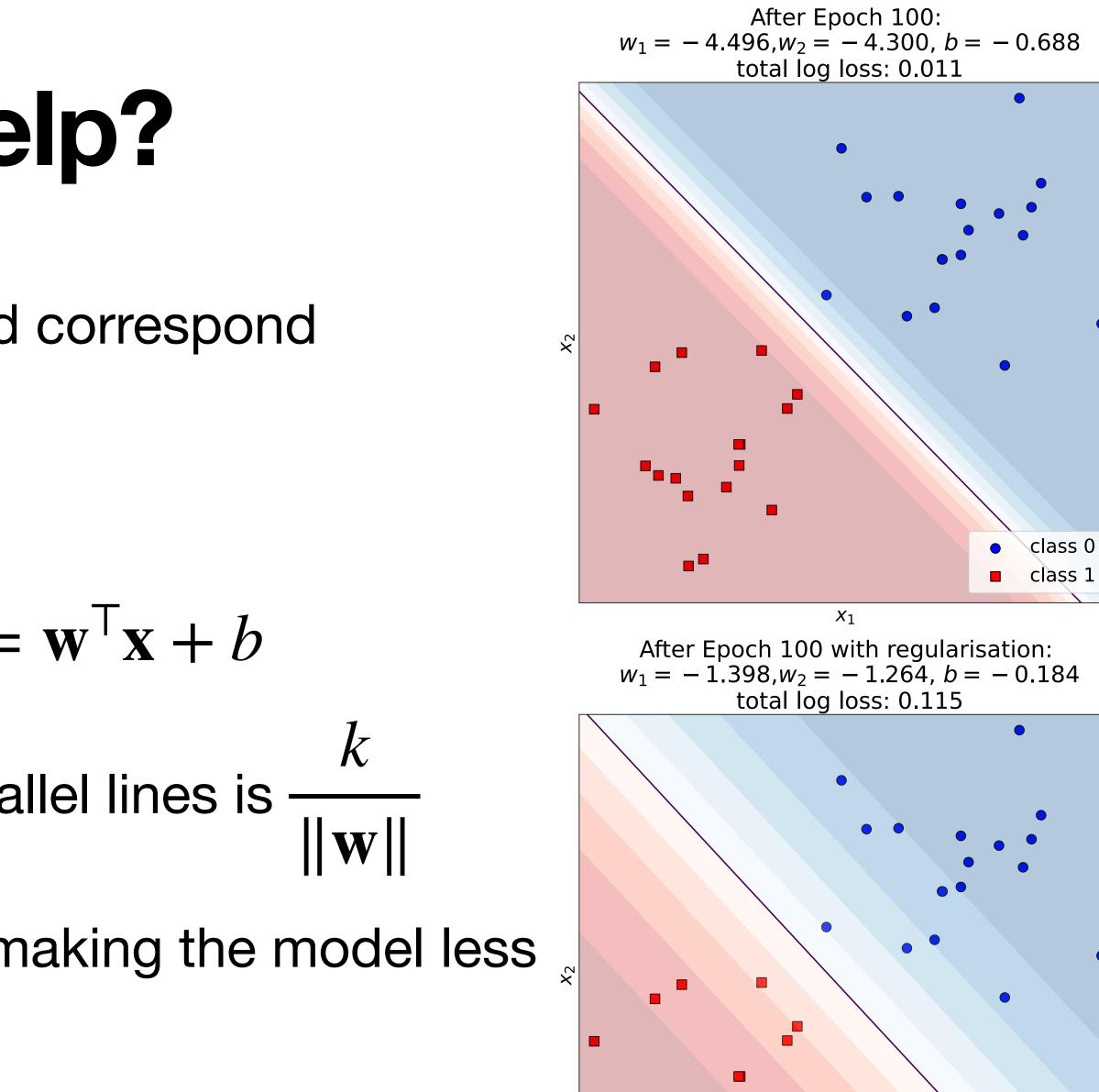
After Epoch 100:

After Epoch 100 with regularisation: $w_1 = -1.398, w_2 = -1.264, b = -0.184$ total log loss: 0.115

class 0 class 1 x_1

Wait, why did that help?

- Consider the line of points that would correspond to some log-odds \boldsymbol{k}
- This is just the line $k = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$
- The decision boundary is the line $0 = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$
- The distance between these two parallel lines is
- Regularising increase this distance, making the model less confident near the boundary



 x_1

class 0

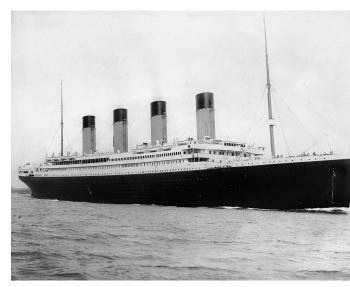
class 1

Titanic Dataset

predict survival using logistic regression

Survive	Fare	Parch	SibSp	Age	Sex	Pclass
	7.2500	0	1	22.0	0	3
	71.2833	0	1	38.0	1	1
	7.9250	0	0	26.0	1	3
	53.1000	0	1	35.0	1	1
	8.0500	0	0	35.0	0	3
	29.1250	5	0	39.0	1	3
	13.0000	0	0	27.0	0	2
	30.0000	0	0	19.0	1	1
	30.0000	0	0	26.0	0	1
	7.7500	0	0	32.0	0	3

- If we standardise data then the weights we learn are interpretable Pclass Sex Age
- Survival more probable for people who are in first class, female, young



We can use historical data about passengers to learn a linear classifier to

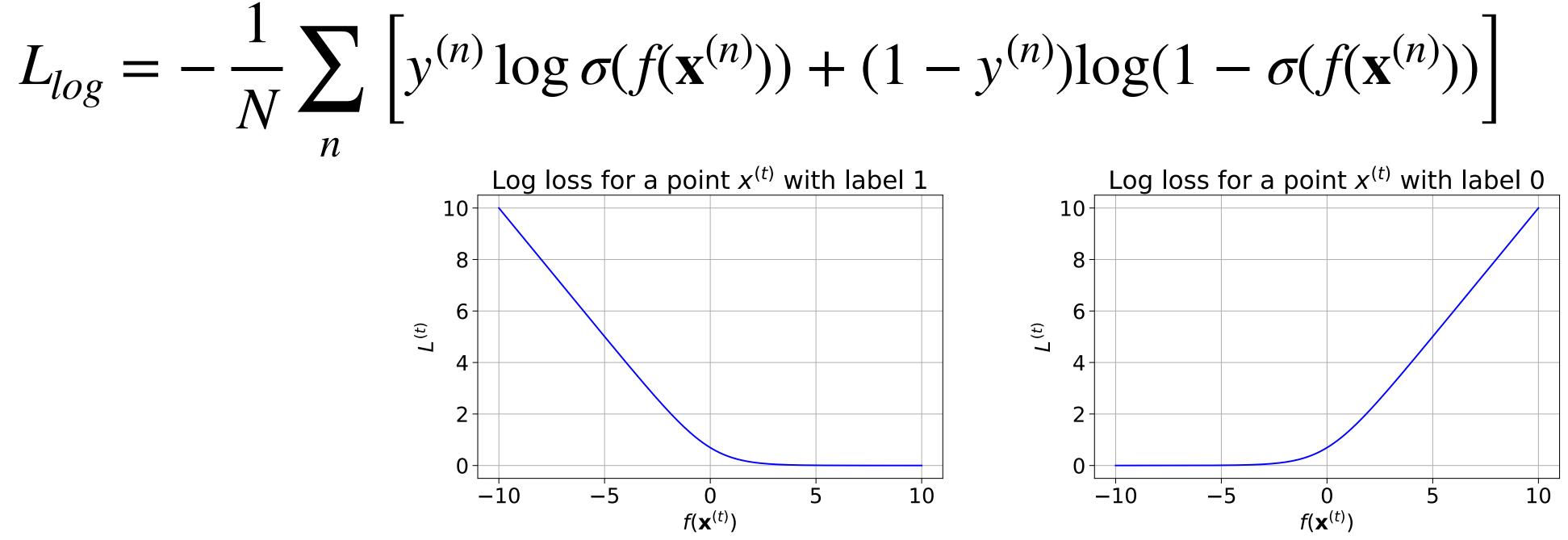
For "Sex", *male* has been mapped to 0 and *female* to 1 arbitrarily

Parch SibSp Fare $\mathbf{w} = \begin{bmatrix} -0.97 & 1.27 & -0.52 & -0.27 & -0.03 & 0.16 \end{bmatrix}^{T}$

Gets 80% on held-out data so is a reasonable model

Logistic regression in short

• Given a linear model $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$, logistic regression is solving minimise L_{log} \mathbf{W}, b

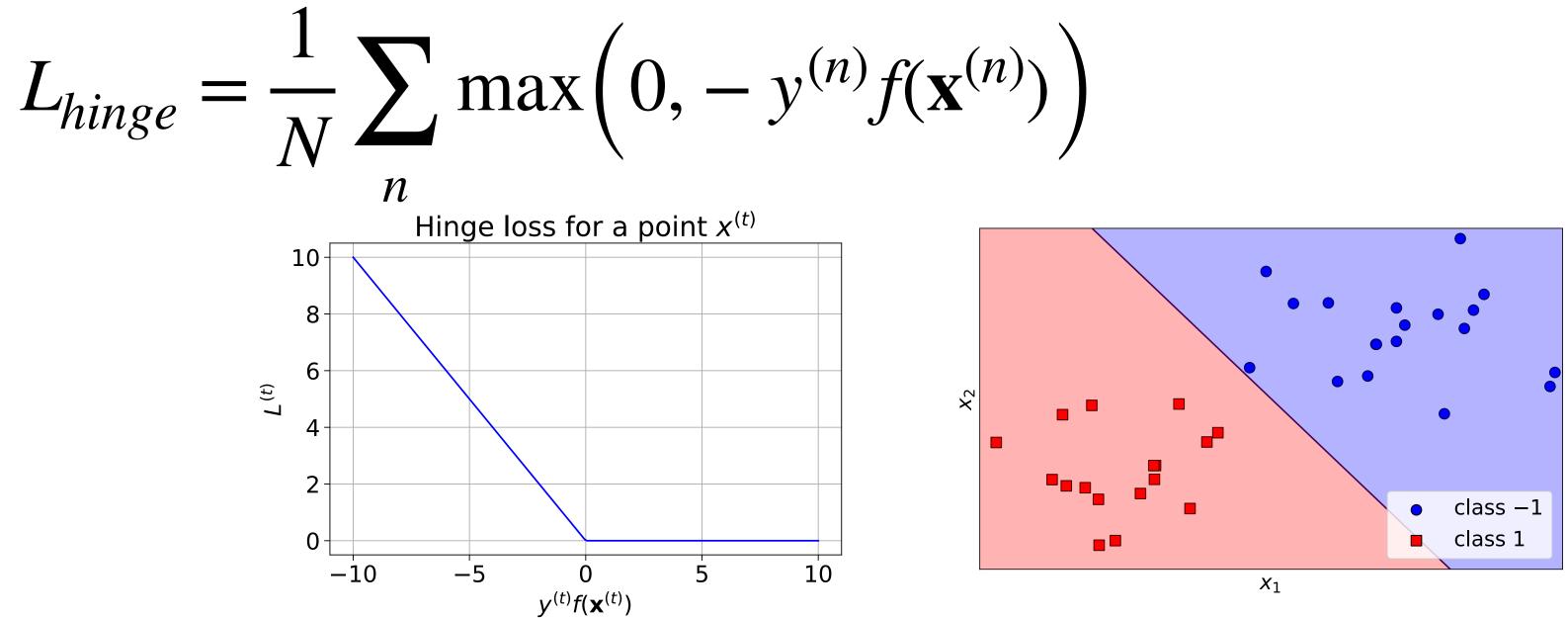


• There are other methods that boil down to minimising different losses

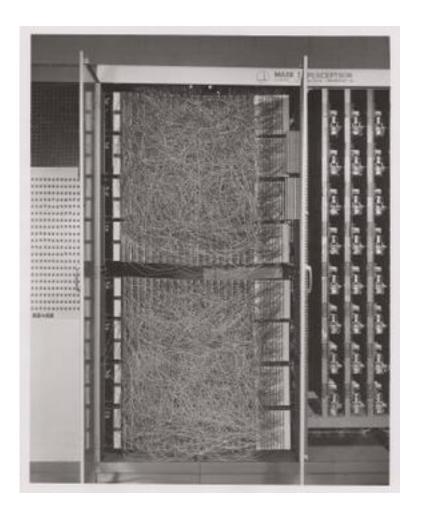
$$(1 - y^{(n)})\log(1 - \sigma(f(\mathbf{x}^{(n)}))]$$

Perceptron learning

- Consider a training set $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$ where $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{y} \in \{-1, 1\}$



• Given a linear model $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ and threshold function $\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) \ge 0 \\ -1 & \text{if } f(\mathbf{x}) < 0 \end{cases}$ the perceptron learning algorithm is equivalent to solving minimise L_{hinge} $\mathbf{W}, \boldsymbol{b}$

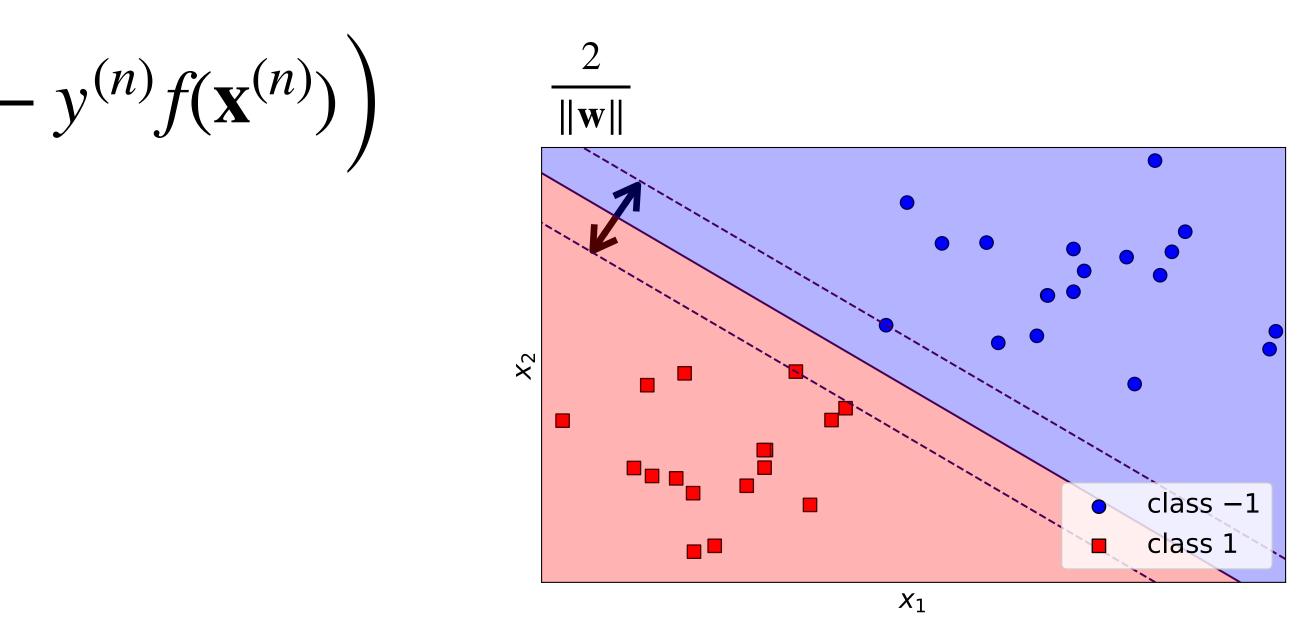


https://en.wikipedia.org/wiki/Perceptron

Support Vector Machines (SVMs)

- Consider a training set $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$ where $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{y} \in \{-1, 1\}$
- Given a linear model $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ and threshold function $\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) \ge 0 \\ -1 & \text{if } f(\mathbf{x}) < 0 \end{cases}$ (linear) SVM learning is equivalent to solving minimise L_{SVM} $\mathbf{W}, \boldsymbol{b}$

$$L_{SVM} = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n} \max(0, 1 - 1) \sum_{n} \max(0, 1) + C \sum_{n} \max(0, 1) +$$



SVMs are maximum margin classifiers

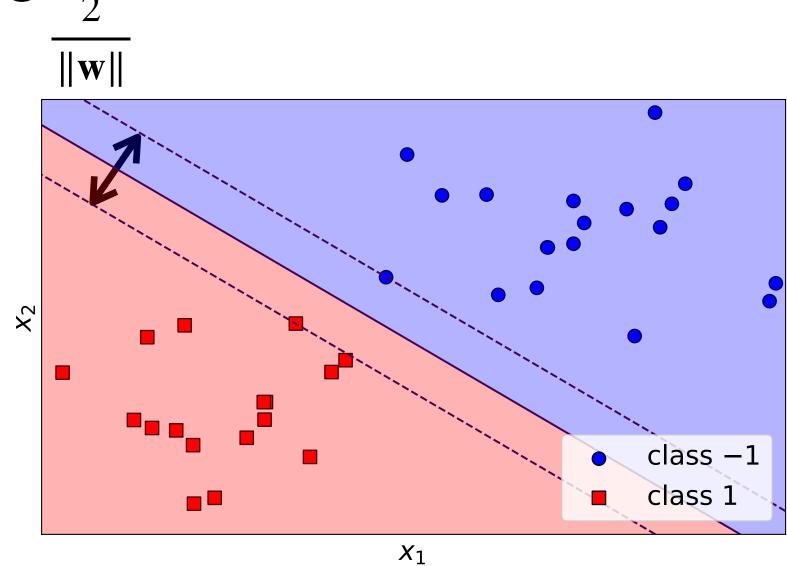
$$L_{SVM} = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n} \max(0, 1 - 1)$$

If we define the margin as the region where $|f(\mathbf{x})| < 1$ then:

- The first term in L_{SVM} is small when the margin is big
- The second term in L_{SVM} is small when points don't live in the margin
- C is a hyperparameter that controls the relative importance of these terms

 $y^{(n)}f(\mathbf{x}^{(n)})$

Logistic regression + sufficient regularisation also gives a large margin



Multinomial Logistic Regression

Multi-class classification with linear classifiers

Now consider the multi-class scenario $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ with $y \in \mathbb{Z}_{< K}^{+} = \{0, 1, \dots, K-1\}.$

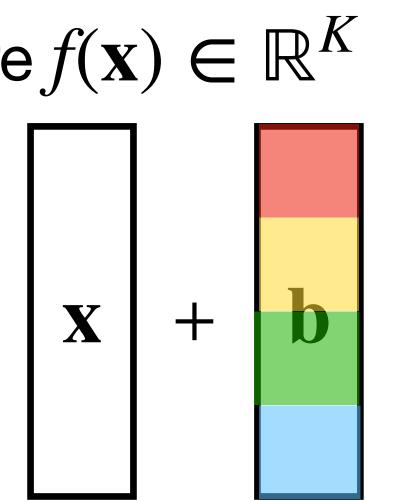
There are three different approaches to solving this:

- 1. We could learn K one-vs-rest classifiers: $f_0(\mathbf{x}), f_1(\mathbf{x}), \dots, f_{K-1}(\mathbf{x})$ and classify points according to the highest score
- 2. We could learn (K(K-1))/2 one-vs-one classifiers and classify points according to the majority vote
- 3. We could make our linear model output a **vector** where each element is a score for a different class and select the class with the highest score

A multi-class linear model

- In the binary case $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ where $\mathbf{x} \in \mathbb{R}^{D}$ and $f(\mathbf{x}) \in \mathbb{R}$
- For our model to output a score for each of *K* classes we can:
 - 1. Replace the vector $\mathbf{w} \in \mathbb{R}^{D}$ with a matrix $\mathbf{W} \in \mathbb{R}^{K \times D}$
 - 2. Replace the bias vector $b \in \mathbb{R}$ with a vector $\mathbf{b} \in \mathbb{R}^{K}$
- This gives $us f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$ where $f(\mathbf{x}) \in \mathbb{R}^{K}$

$$f(\mathbf{x}) = \mathbf{W}$$



+ **b** Like having *K* models side-by-side

Multinomial logistic regression

- Logistic regression naturally extends to multi-class problems
- In the binary setting, we just had $f(\mathbf{x}) \in \mathbb{R}$ as the log-odds for class 1
- We now have $f(\mathbf{x}) \in \mathbb{R}^{K}$. There are the **logits** for each class
- They are unnormalised log-probabilities; a generalisation of log-odds

 $\mathbf{p} =$

• Let's store the actual probabilities in a vector \mathbf{p} and relate these to the logits via some function S

$$p(y = 0 | \mathbf{x})$$

$$p(y = 1 | \mathbf{x})$$

$$p(y = 2 | \mathbf{x})$$

$$\vdots$$

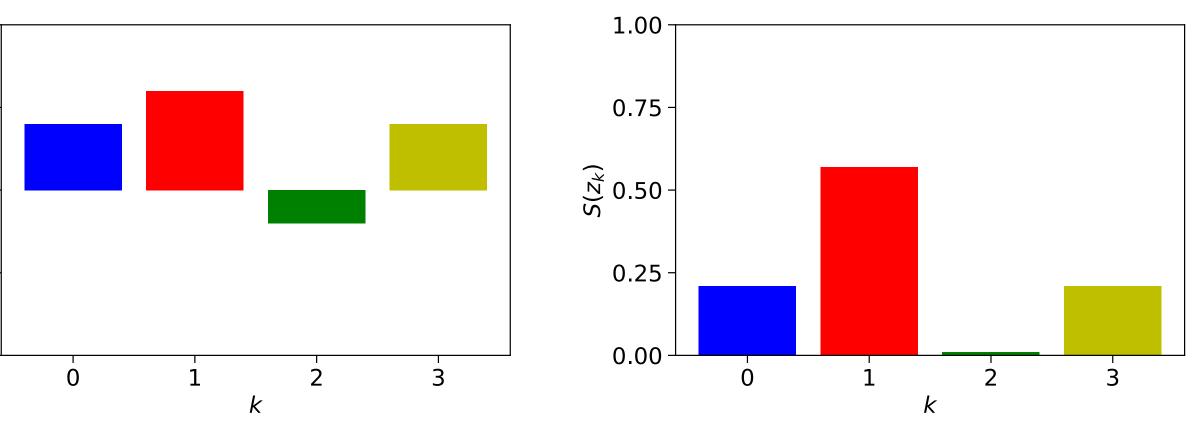
$$p(y = K - 1 | \mathbf{x})$$

Softmax

- **p** must sum to 1 so we need a function that normalises $f(\mathbf{x})$
- all values are between 0 and 1

$$S(\mathbf{z}) = S(\begin{bmatrix} z_0 \\ z_1 \\ \vdots \\ z_{K-1} \end{bmatrix}) = \begin{bmatrix} \frac{\exp z_0}{\sum_{k=0}^{K-1} \exp z_k} \\ \frac{\exp z_1}{\sum_{k=0}^{K-1} \exp z_k} \\ \vdots \\ \frac{\exp z_{K-1}}{\sum_{k=0}^{K-1} \exp z_k} \end{bmatrix}$$

• We will use the softmax function S which squashes $f(\mathbf{x})$ so it sums to 1 and



Learning for multinominal logistic regression

- We have $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$ and $f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$ and want to solve minimise L_{log}
- If we one-hot encode our labels as vectors then we can write the log loss as $L_{log} = \frac{1}{N} \sum_{n=1}^{N} - \mathbf{y}^{(n)\top} \log \mathbf{p}^{(n)}$
- $\mathbf{y} \in \mathbb{R}^{K}$ is a one-hot encoding of y which is 1 for the element corresponding to class k
- We can use a gradient-based optimiser with $\nabla_{\mathbf{W}} L_{log}$ and $\nabla_{\mathbf{b}} L_{log}$

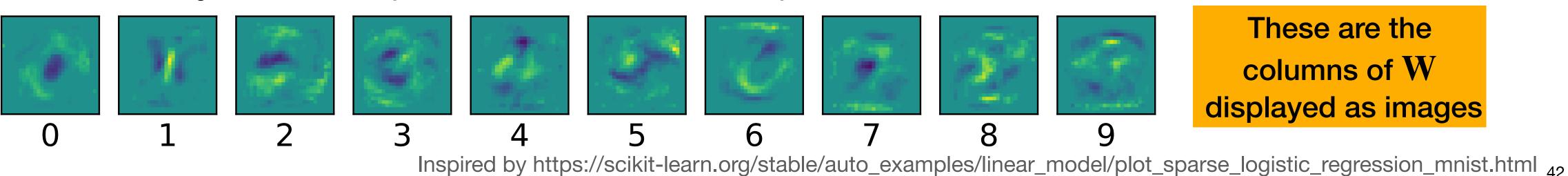
$$\nabla_{\mathbf{W}} L_{log} = \frac{1}{N} \left[\sum_{n} \left(\mathbf{p}^{(n)} - \mathbf{y}^{(n)} \right) \mathbf{x}_{n}^{\mathsf{T}} \right] \qquad \nabla_{\mathbf{b}} L_{log} = \frac{1}{N} \left[\sum_{n} \left(\mathbf{p}^{(n)} - \mathbf{y}^{(n)} \right) \right]$$

and zero elsewhere e.g. for K = 6 and $y^{(t)} = 2$ we have $\mathbf{y}^{(t)} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^{\top}$

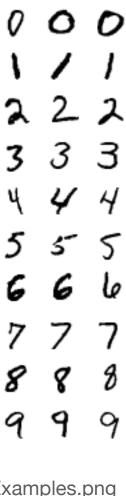
See Murphy p346 for a derivation, noting differences in notation.

Digit classification on MNIST

- MNIST dataset has 60k images (50k train, 10k test)
- Images are 28×28 so can vectorise to get $\mathbf{x} \in \mathbb{R}^{784}$
- Each image is labelled as a digit 0-9 so $y \in \mathbb{Z}^+_{<10}$
- Let's perform multinomial logistic regression with L1 regularisation
- Predict according to most probable class: $\hat{y} = \operatorname{argmax} \mathbf{p} = \operatorname{argmax} f(\mathbf{x})$ k k
- Test accuracy: 89.4% (or test error: 10.6%)



0	0	0	0	0	0	0	0	D	٥	0	0	0
1	l	١	١	١	1	1	(/	1	١	1	1
2	ູ	2	2	ð	J	2	2	ደ	2	2	2	2
З	3	3	3	3	3	3	3	3	3	3	З	3
4	4	٤	ч	4	4	Ч	ч	4	4	4	4	4
F	-	-	-	-	~		-	~			~	
3	5	5	С	2	S	S	5	5	5	5	5	5
						-			•		56	
6	G	6	6	6	6	6	6	6	6	ķ		6
6 F	6 7	6 1	6 7	د 7	6 7	6 7	6 7	ь 2	6 7	6 7	6	6 7



Summary

- We have seen that a linear classifier is a linear model plus a threshold function and looks at its decision boundary
- We have found out how to perform logistic regression for binary classification We have briefly looked at perceptrons and SVMs
- We have seen how to adapt logistic regression for multi-class classification

