
Elliot J. Crowley, 4th March 2024

Data Analysis and Machine 
Learning 4 (DAML)
Week 7: Model selection and evaluation



• We learnt that a linear classifier consisted of a linear model + threshold 
function


• We saw that this gave rise to a (linear) decision boundary 


• We looked at different loss functions for fitting the model parameters

Recap

2

f(x) = 0

̂y = {1 if f(x) > 0
0 if f(x) < 0

f(x) = w⊤x + b



More classifiers

3



-nearest neighbours ( -NN)k k

• A simple non-parametric model for classification with hyperparameter 


• Classify according to the mode class label of the  closest training points

k

k

4
Here we are using k = 3



-NN decision boundaryk

• Classify according to the mode class label of the  closest training points


• This gives a non-linear decision boundary

k

5



-NN for multi-class classificationk

• Classify according to the mode class label of the  closest training points


• This can be naturally applied to multi-class problems

k

6



Quadratic discriminant analysis (QDA)

• Using Bayes rule, we can write the probability that a class label is  given  as  





•  is independent of  so we can ignore it and classify according to 



•  is just the fraction of our training data in class 


• We can make the normal assumption  

c x

p(y = c |x) =
p(x |y = c)p(y = c)

p(x)

p(x) c
argmax

c
p(x |y = c)p(y = c)

p(y = c) c

p(x |y = c) = 𝒩(x; μc, Σc)

7

This is a multivariate Gaussian where the mean is 
a vector and the covariance is a matrix. You’ll look 

at these in detail in Lecture 9



QDA continued

• We can use maximum likelihood estimation (MLE) to compute  and 
 for each class from the training data


• This is just the mean and covariance of the points in each class!


• This gives us a quadratic decision boundary between classes


• This is a generative classifier as we can sample from 
 to generate points for class 

μc ∈ ℝD

Σc ∈ ℝD×D

p(x |y = c) = 𝒩(x; μc, Σc) c

8



1D QDA example

9



Linear discriminant analysis (LDA)

• In QDA we classified according to  where 




• Let’s make the simplifying assumption that  for all classes


• If we perform MLE we now get a classifier with a linear 
decision boundary

argmax
c

p(x |y = c)p(y = c)

p(x |y = c) = 𝒩(x; μc, Σc)

Σc = Σ

10



Gaussian Naive Bayes classifier

• In QDA  where 


• For large  the  matrices will be extremely large 


• Gaussian Naive Bayes is like QDA except we assume that each  is diagonal


• This means that we are assuming features are independent of each other for a 
given class  


• This lets us write 

p(x |y = c) = 𝒩(x; μc, Σc) Σc ∈ ℝD×D

D Σc

Σc

p(x |y = c) = ∏
d

p(xd |y = c) = ∏
d

𝒩(xd; μc, σc)

11



Naive Bayes in general

• In Gaussian Naive Bayes 


• We are assuming each feature (conditioned on class) is normally distributed


• In <insert distribution name here> Naive Bayes we assume each 
 is <insert distribution name here> distributed


• Multinomial Naive Bayes is suitable for text classification on bag-of-words 
features

p(x |y = c) = ∏
d

p(xd |y = c) = ∏
d

𝒩(xd; μc, σc)

p(xd |y = c)

12

I like sausage sausage sausageI hate sausage

[1 1 1 0]⊤ [1 0 1 1]⊤ [0 0 2 0]⊤



No free lunch

• In terms of classification you know about Logistic regression, Perceptrons, 
Support Vector Machines, -nearest neighbours, QDA, LDA, and Naive Bayes


• You are given some data and you have to solve a classification task. Which 
model type do you pick? Which is the best?


• Unfortunately… there is no universal best model! There is no free lunch!

k

13



Model selection

14



Dataset splits

• Given a dataset and a task (e.g. classification) in machine learning we typically 
divide our dataset into a training set, a validation set, and a test set 

• The training set is used for training models 

• The validation set is used for model selection 

• The test set is used for a FINAL EVALUATION OF A CHOSEN MODEL

Dataset

Train TestValidation

15



Warning!

• The whole point of ML is to learn a model that will work well on new data


• The purpose of the test set is to give you a unbiased estimate of how well 
your final chosen model works on new data before you deploy it 


• Never train on test data 

• Never perform model selection on test data 

• Set aside your test set at the start and don’t look at it until you have selected 
a final model

You should evaluate  
on the test set as little 

as possible, ideally 
only once!

16



Some pitfalls to be aware of

• Watch out for duplicates! The same point could end up in both train and test


• Consider a medical task where you have data points associated with different 
patients — points from the same patient mustn’t be in both train and test


• Your data points might be measured at certain times — train points should 
occur before test points (and with a sensible gap in time between the two)


• Don’t use test data to compute e.g. statistics, PCA 
etc. (more on this later)


• Don’t use features that were measured  
after your targets

17



Model selection

• Model selection is the problem of finding the best model for a given task 


• A model has some model type (e.g. SVM, -NN) and hyperparameters (e.g. 
regularisation strength)


• We use the training set to train models for different types of model and 
different hyperparameters


• We use a dedicated validation set (or perform cross-validation) to evaluate 
those models and select the best one


• What is “best”? This depends on your desiderata. We will usually assume it is 
the model that maximises some score e.g. accuracy for classification

k

18



A general ML workflow

Inspiration: https://developers.google.com/machine-learning/crash-course/validation/another-partition

Select the model that 
does best on the 

validation 

Do a final evaluation of 
that model on the test set

Train model on the 
training set

Evaluate model on the 
validation set / via 
cross-validation

Tweak model

19

https://developers.google.com/machine-learning/crash-course/validation/another-partition


Example
• Task: 10-way digit classification


• Dataset: 1797 vectorised images  labelled 


1. I split the dataset into 60/20/20 train/val/test


2. I choose to only consider -NN models


3. I evaluate NN (which uses the training set) for  on the validation set


4. I select the model that gets highest accuracy on val 


5. Then, I evaluate my final chosen model on the test set and get 98.8% accuracy

x ∈ ℝ64 y ∈ ℤ+
<10

k

k− k = 1,...,100

(k = 1)

20



Example
• Task: 3-way iris classification 


• Dataset: 150 vectors of measurements  labelled 


1. I split the dataset into 50/25/25 train/val/test


2. I choose to consider 2 model types: LDA and logistic regression (with default hyperparameters)


3. I train a model for each model form on the training set


4. I evaluate these models on the validation set


5. I select logistic regression because it gets the highest accuracy on the validation set


6. Then, I evaluate my chosen model on the test set 

x ∈ ℝ4 y ∈ ℤ+
<3

Typically, the chosen model is 
retrained on both train and 

validation to make the most of 
available data

21



Cross-validation

• We have been evaluating on a dedicated validation set for model selection


• This means the model we choose will be sensitive to the way the dataset was 
split up


• We can instead evaluate models through cross-validation 

• This does not require us to have a dedicated validation set 

Dataset

Train Test

22



-fold cross validation ( )k k = 5

Inspiration: https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation

Dataset

Train Test

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Train on , evaluate on {Q2, Q3, Q4, Q5} Q1

Train on , evaluate on {Q1, Q3, Q4, Q5} Q2

Train on , evaluate on {Q1, Q2, Q4, Q5} Q3

Train on , evaluate on {Q1, Q2, Q3, Q5} Q4

Train on , evaluate on {Q1, Q2, Q3, Q4} Q5

Then take average performance across  Q1, Q2, Q3, Q4, Q5

23

https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation


Grid search with -fold cross validationk

α = 0

α = 1

β = 1 β = 10

Cross-validation performance can be used in place 
of validation performance when doing a grid search

Imagine we have hyperparameters  and .

Let’s search over  and 

α β
α = {0,1} β = {1,10}

24

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5



A note on grid search

• Grid search is an intuitive starting point for hyperparameter tuning


• But random search (and other schemes) work better in practice!

Figures inspired by Raschka et al.’s book
25

Hyperparameter 11Hyperparameter 11
H

yp
er

pa
ra

m
et

er
 2

1

H
yp

er
pa

ra
m

et
er

 2
1



There are so many models to choose from

• Ideally, we’d try everything*: all model types + hyperparameter combinations


• But we don’t have infinite compute, we need to be pragmatic!


• A reasonable strategy is to compare model types with default 
hyperparameters (on val/cross-val) …


• Then tune the hyperparameters of the most promising model type (on val/
cross-val)

We don’t consider nested cross-validation in this course, but it’s worth looking at if you have a moment: 
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html

*Validation and test sets “wear out with repeated use” (see https://developers.google.com/machine-learning/
crash-course/validation/another-partition at the bottom of the page)

26

https://developers.google.com/machine-learning/crash-course/validation/another-partition
https://developers.google.com/machine-learning/crash-course/validation/another-partition
https://developers.google.com/machine-learning/crash-course/validation/another-partition


You might have a pipeline where, given an input … 


• You normalise it with a standard scaler 


• You then perform dimensionality reduction with PCA 


• You then put it through a model 

x

z(x)

ϕ(z(x))

f(ϕ(z(x)))

StandardScaler 
z

PCA 
ϕ

Model 
f

But the model isn’t the whole story…

27



• The scaler uses some statistics  so let’s write 


• PCA uses a matrix  so let’s write 


• The model has parameters  so let’s write 


• Test (or val) data must not be used to compute any of 


• Using pipelines in sklearn helps prevent this data leakage 

μ zμ

W ϕW

θ fθ

μ, W, θ

StandardScaler 
zμ

PCA 
ϕW

Model 
fθ

28

Data leakage and pipelines



Pipelines

• We can (and should) tune hyperparameter combinations within pipelines


•
 
e.g. above we could grid search across values of  and 


• We can also compare across pipelines, swapping different parts


•
 
This is all model selection so use validation / cross-val to find the best 
pipeline for your task

α λ

StandardScaler PCA 
n_components = α

LogisticRegression 
λ

Standard
Scaler

Feature 
transform 1

Logistic 
regression

Standard
Scaler

Feature 
transform 2

Logistic 
regression

29



A general ML workflow

Inspiration: https://developers.google.com/machine-learning/crash-course/validation/another-partition

Select the pipeline that 
does best on the 

validation 

Do a final evaluation of 
that pipeline on the test 

set

Train pipeline on the 
training set

Evaluate pipeline on 
the validation set / via 

cross-validation

Tweak pipeline

30

https://developers.google.com/machine-learning/crash-course/validation/another-partition


Model evaluation

31



Evaluating binary classifiers

• So far we have used accuracy as the de facto means to evaluate a classifier 


• This is simply the fraction of correct predictions (error is 1 minus accuracy)


• If we have a binary classifier and consider class 1 to be the “positive class” 
and class 0 to be the “negative class” then we can write accuracy as:


TP + TN
TP + TN + FP + FN

 is # true positives 
 is # true negatives 
 is # false positives  
 is # false negatives

TP
TN
FP
FN

TN FP

FN TP

True class

Predicted class

0

1

0 1

32



Confusion matrices

• A model predicts that a patient with cancer has cancer ( )


• A model predicts that a patient with cancer doesn’t have cancer ( ) 

• A model predicts that a patient without cancer has cancer ( )


• A model predicts that a patient without cancer doesn’t have cancer ( )


TP

FN

FP

TN

Both these classifiers have 
the same accuracy 

One is much worse…

50 2

10 50

True class

Predicted class

0

1

0 1

50 10

2 50

True class

Predicted class

0

1

0 1A B

33



Class imbalances

• Most of the datasets we’ve considered are balanced


• They have similar numbers of examples in each class


• What happens if e.g. class 1 is more rare? 

34



Dummy classifiers

• Consider a training set that is 90% class 0 and 10% class 1


• Now consider a dummy classifier that always predicts class 0


• It gets 90% accuracy despite having learnt nothing! 

• Always be aware of the dumbest baseline when evaluating models

35



Accounting for class imbalances
• Class imbalances are part of life


• Imagine diagnosing a rare disease like lycanthropy… hardly anyone has it!


• The number of positives  is much less than the number of negatives 


• Let’s consider the true positive rate     

• Let’s also consider the false positive rate  

• We want high  and low  for finding werewolves 
(and other things)

P N

TPR =
TP
P

FPR =
FP
N

TPR FPR

36



Receiver operating characteristic 

• The predictions of a binary classifier are typically made according to





•  is usually 0 but we can calibrate it


• We need to reduce  to increase our true positive rate


• But we need to increase  to reduce our false positive rate

̂y = {1 if f(x) ≥ τ
0 if f(x) < τ

τ

τ

τ

f(x) +∞−∞

τ
0
1

Inspiration for figure: https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall 37



Receiver operating characteristic (ROC) curves

• This is a plot of  against  for different thresholds 


• A good classifier should hug the top-left corner of this plot


• We can therefore use the area under the curve (AUC) to summarise a 
classifier’s performance when we care about  and 


• ROC curves are insensitive to class imbalance 

TPR FPR τ

FPR TPR

A neat interpretation is that the AUC is the 
probability that given a randomly sampled 

positive and negative point, the positive point 
will have the higher classifier score  

(Credit: Joe Mellor)

38



Precision and recall for a fixed threshold

• The recall ( ) is the fraction of correctly classified +ve examples for a 
fixed threshold 


 

• The precision is the fraction of examples which were classified as +ve that 
were classified correctly for a fixed threshold 





• We want both high recall and precision but there is a balancing act

= TPR
τ

RECτ =
TP
P

=
TP

TP + FN

τ

PREτ =
TP

TP + FP

The  score combines precision and recall into a single number:  F1 F1τ = 2
PREτ × RECτ

PREτ + RECτ
39



PR curves

• Precision and recall can be plotted against each other as we vary 


• The area under this curve is called average precision (AP) and summaries 
the combined precision-recall profile of a classifier across thresholds

τ

PR and ROC curves show roughly the same 
information. 

See https://pages.cs.wisc.edu/~jdavis/
davisgoadrichcamera2.pdf

Example from sklearn docs 40

https://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf
https://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf


Multi-class classification

• We have seen a bunch of ways to score binary classifiers


• What happens if we have classes  with  
samples?


• We can compute a score per class  with that class as +ve and 
the rest as -ve and combine those scores in some manner


• The macro-average weights each class equally, and the weighted average 
weights classes according to how many samples there are in that class

0,1,…, K − 1 N0, N1, …, NK−1

s0, s1, …, sK−1

smacro =
s0 + s1 + … + sK−1

K
sweighted =

N0s0 + N1s1 + … + NK−1sK−1

N

41



Evaluating regression models

•  is the most common score for evaluating regression models


• We aren’t going to consider scores other than  and MSE for regression


• Please check out https://scikit-learn.org/stable/modules/
model_evaluation.html#regression-metrics to find out about other scores

R2

R2

42

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics


Decisions, decisions

• Ultimately, your ML model gives you a prediction


• You have to make a decision on the basis of that prediction!


• That decision could be “do nothing”

43



Bayesian decision theory

• We have a binary classifier that predicts  where  is not-
cancer/cancer


• Using this prediction, We can make a decision - we can diagnose a 
patient as having cancer  or not having cancer 


• We can create a loss matrix where each element quantifies how bad 
action  is given the true label is  e.g. 


• The empirical risk of taking action 1 is 



• The empirical risk of taking action 0 is 



• Take the action with the least risk!

p(y |x) y = 0/1

(a = 1) (a = 0)

a y L0,1 = L(a = 0 |y = 1)

R(a = 1 |x) = L(a = 1 |y = 1)p(y = 1 |x) + L(a = 1 |y = 0)p(y = 0 |x)

R(a = 0 |x) = L(a = 0 |y = 1)p(y = 1 |x) + L(a = 0 |y = 0)p(y = 0 |x)

44

0 1

10 0

True label y

Action a

0

1

0 1

Hypothetical  
loss matrix L



Bayesian decision theory continued

• If there are  classes and  possible actions then we have loss matrix 
 and the empirical risk of action  is 





• But you know how these models work. Can you always trust them? 

• Do you really believe that they output reliable probabilities?


• Is this all a bit utilitarian?


• Be careful

K A
L ∈ ℝK×A i

R(a = i |x) = ∑
j

L(a = i |y = j)p(y = j |x)

45



Summary

• We have looked at the non-parametric -NN classifier


• We have looked at some generative classifiers


• We have studied the purpose of training, validation, and test splits


• We have considered the problem of model selection 


• We have looked at multiple ways to evaluate classifiers


• We saw how to make decisions on the basis of empirical risk

k

46


