Data Analysis and Machine Learning 4 (DAML) Week 7: Model selection and evaluation

Elliot J. Crowley, 4th March 2024

of EDINBURGH

Recap

- We learnt that a linear classifier consisted of a linear model + threshold function
- We saw that this gave rise to a (linear) decision boundary

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$
$$\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) > 0\\ 0 & \text{if } f(\mathbf{x}) < 0 \end{cases}$$

• We looked at different loss functions for fitting the model parameters

More classifiers

k-nearest neighbours (k-NN)

- A simple non-parametric model for classification with hyperparameter k
- Classify according to the mode class label of the k closest training points

Here we are using k = 3

k-NN decision boundary

- This gives a non-linear decision boundary

• Classify according to the mode class label of the k closest training points

k-NN for multi-class classification

- This can be naturally applied to multi-class problems

• Classify according to the mode class label of the k closest training points

Quadratic discriminant analysis (QDA)

• Using Bayes rule, we can write the probability that a class label is c given ${f x}$ as

$$p(y = c | \mathbf{x}) = \frac{p(\mathbf{x} | y = c)p(y = c)}{p(\mathbf{x})}$$

- $p(\mathbf{x})$ is independent of c so we can ignore it and classify according to $\underset{c}{\operatorname{argmax}} p(\mathbf{x} | y = c) p(y = c)$
- p(y = c) is just the fraction of our training data in class c
- We can make the normal assumptio

This is a multivariate Gaussian where the mean is a vector and the covariance is a matrix. You'll look at these in detail in Lecture 9

on
$$p(\mathbf{x} | y = c) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c})$$

QDA continued

- We can use maximum likelihood estimation (MLE) to compute $\mu_c \in \mathbb{R}^D$ and $\Sigma_c \in \mathbb{R}^{D \times D}$ for each class from the training data
- This is just the mean and covariance of the points in each class!
- This gives us a quadratic decision boundary between classes
- This is a generative classifier as we can sample from $p(\mathbf{x} | y = c) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$ to generate points for class c

1D QDA example

X

Linear discriminant analysis (LDA)

• In QDA we classified according to $\operatorname{argmax} p(\mathbf{x} \mid y = c)p(y = c)$ where

$$p(\mathbf{x} | y = c) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c})$$

- Let's make the simplifying assumption that $\Sigma_c = \Sigma$ for all classes
- If we perform MLE we now get a classifier with a linear decision boundary

C

Gaussian Naive Bayes classifier

- In QDA $p(\mathbf{x} | y = c) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c})$ where $\boldsymbol{\Sigma}_{c} \in \mathbb{R}^{D \times D}$
- For large D the $\mathbf{\Sigma}_c$ matrices will be extremely large
- Gaussian Naive Bayes is like QDA except we assume that each $oldsymbol{\Sigma}_c$ is diagonal
- This means that we are assuming features are independent of each other for a given class

d

• This lets us write $p(\mathbf{x} | y = c) =$

$$\begin{bmatrix} p(x_d | y = c) = \prod_d \mathcal{N}(x_d; \mu_c, \sigma_c) \end{bmatrix}$$

Naive Bayes in general

- In Gaussian Naive Bayes $p(\mathbf{x} | \mathbf{y} =$
- In <insert distribution name here> Naive Bayes we assume each $p(x_d | y = c)$ is **<insert distribution name here>** distributed
- Multinomial Naive Bayes is suitable for text classification on bag-of-words features

I like sausage I hate sausage

 $\begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^{\top}$ $\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}^{\perp}$

$$c) = \prod_{d} p(x_d | y = c) = \prod_{d} \mathcal{N}(x_d; \mu_c, \sigma_c)$$

• We are assuming each feature (conditioned on class) is normally distributed

sausage sausage

 $[0 \ 0 \ 2 \ 0]^{\perp}$

No free lunch

- In terms of classification you know about Logistic regression, Perceptrons, Support Vector Machines, k-nearest neighbours, QDA, LDA, and Naive Bayes
- You are given some data and you have to solve a classification task. Which model type do you pick? Which is the best?
- Unfortunately... there is no universal best model! There is no free lunch!

Model selection

Dataset splits

- Given a dataset and a task (e.g. classification) in machine learning we typically divide our dataset into a training set, a validation set, and a test set
- The training set is used for training models
- The validation set is used for model selection
- The test set is used for a FINAL EVALUATION OF A CHOSEN MODEL

Warning!

- your final chosen model works on new data before you deploy it
- Never train on test data
- Never perform model selection on test data
- a final model

The whole point of ML is to learn a model that will work well on new data

The purpose of the test set is to give you a unbiased estimate of how well

Set aside your test set at the start and <u>don't look at it</u> until you have selected

You should evaluate on the test set as little as possible, ideally only once!

Some pitfalls to be aware of

- Watch out for duplicates! The same point could end up in both train and test
- Consider a medical task where you have data points associated with different patients — points from the same patient mustn't be in both train and test
- Your data points might be measured at certain times train points should occur **before** test points (and with a sensible gap in time between the two)
- Don't use test data to compute e.g. statistics, PCA etc. (more on this later)
- Don't use features that were measured after your targets

Model selection

- Model selection is the problem of finding the best model for a given task
- A model has some model type (e.g. SVM, k-NN) and hyperparameters (e.g. regularisation strength)
- We use the training set to train models for different types of model and different hyperparameters
- We use a dedicated validation set (or perform cross-validation) to evaluate those models and select the best one
- What is "best"? This depends on your desiderata. We will usually assume it is the model that maximises some score e.g. accuracy for classification

A general ML workflow

Inspiration: <u>https://developers.google.com/machine-learning/crash-course/validation/another-partition</u>

Example

- Task: 10-way digit classification
- Dataset: 1797 vectorised images $\mathbf{x} \in \mathbb{R}^{64}$ labelled $y \in \mathbb{Z}^+_{<10}$
- 1. I split the dataset into 60/20/20 train/val/test
- I choose to only consider k-NN models 2.
- I evaluate k-NN (which uses the training set) for k = 1, ..., 100 on the validation set 3.
- I select the model that gets highest accuracy on val (k = 1)4.
- Then, I evaluate my final chosen model on the test set and get 98.8% accuracy 5.

Example

- Task: 3-way iris classification
- Dataset: 150 vectors of measurements $\mathbf{x} \in \mathbb{R}^4$ labelled $y \in \mathbb{Z}_{<3}^+$
- 1. I split the dataset into 50/25/25 train/val/test
- 2.
- 3. I train a model for each model form on the training set
- I evaluate these models on the validation set 4.
- 5. I select logistic regression because it gets the highest accuracy on the validation set
- Then, I evaluate my chosen model on the test set 6.

I choose to consider 2 model types: LDA and logistic regression (with default hyperparameters)

Typically, the chosen model is retrained on both train and validation to make the most of available data

Cross-validation

- We have been evaluating on a dedicated validation set for model selection
- This means the model we choose will be sensitive to the way the dataset was split up
- We can instead evaluate models through cross-validation
- This does not require us to have a dedicated validation set

Dataset

Q_1	Q_2	Q_3	Q_4
Q_1	Q_2	Q_3	Q_4
Q_1	Q_2	Q_3	Q_4
Q_1	Q_2	Q_3	Q_4
Q_1	Q_2	Q_3	Q_4

Then take average performance across Q_1, Q_2, Q_3, Q_4, Q_5

Inspiration: <u>https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation</u>

Grid search with k-fold cross validation

Imagine we have hyperparameters α and β . Let's search over $\alpha = \{0,1\}$ and $\beta = \{1,10\}$

Cross-validation performance can be used in place of validation performance when doing a grid search

 $\alpha = 1$

$$\beta = 1 \qquad \beta = 10$$

$$Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5$$

$$Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5$$

$$Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5$$

$$Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5$$

$$Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5$$

$$Q_1 \quad Q_2 \quad Q_3$$

$$Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5$$

$$Q_1 \quad Q_2 \quad Q_3$$

 $\begin{array}{c} Q_1 & Q_2 \\ Q_1 & Q_2 \end{array}$

$$Q_3$$
 Q_4
 Q_5
 Q_1
 Q_2
 Q_1
 Q_1
 Q_2
 Q_1
 Q_2
 Q_1
 Q_2
 Q_1
 Q_2
 Q_1
 Q_2
 Q_2
 Q_1
 Q_2
 Q_2

A note on grid search

- Grid search is an intuitive starting point for hyperparameter tuning
- But random search (and other schemes) work better in practice!

Hyperparameter 1

Hyperparameter 1 Figures inspired by Raschka et al.'s book

There are so many models to choose from

- Ideally, we'd try everything*: all model types + hyperparameter combinations
- But we don't have infinite compute, we need to be pragmatic!
- A reasonable strategy is to compare model types with default hyperparameters (on val/cross-val) ...
- Then tune the hyperparameters of the most promising model type (on val/ cross-val)

*Validation and test sets "wear out with repeated use" (see https://developers.google.com/machine-learning/crash-course/validation/another-partition at the bottom of the page)

We don't consider nested cross-validation in this course, but it's worth looking at if you have a moment: https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html

But the model isn't the whole story...

You might have a **pipeline** where, given an input **x**...

- You normalise it with a standard scaler $z(\mathbf{x})$
- You then perform dimensionality reduction with PCA $\phi(z(\mathbf{x}))$
- You then put it through a model $f(\phi(z(\mathbf{x})))$

Data leakage and pipelines

- The scaler uses some statistics μ so let's write z_{μ}
- PCA uses a matrix \boldsymbol{W} so let's write
- The model has parameters $\pmb{\theta}$ so let's write $f_{\pmb{\theta}}$
- Test (or val) data must <u>not</u> be used to compute any of $\mu, W, heta$
- Using pipelines in sklearn helps prevent this data leakage

StandardScaler Z_{μ}

$$\phi_{\mathrm{W}}$$

Pipelines

- e.g. above we could grid search across values of α and λ
- We can also compare **across** pipelines, swapping different parts

This is all model selection so use validation / cross-val to find the best pipeline for your task

We can (and should) tune hyperparameter combinations within pipelines

A general ML workflow

Inspiration: <u>https://developers.google.com/machine-learning/crash-course/validation/another-partition</u>

Nodel evaluation

Evaluating binary classifiers

- So far we have used accuracy as the de facto means to evaluate a classifier
- This is simply the fraction of correct predictions (error is 1 minus accuracy)
- If we have a binary classifier and consider class 1 to be the "positive class" and class 0 to be the "negative class" then we can write accuracy as:

- TP + TN
- TP + TN + FP + FN

TP is # true positives TN is # true negatives *FP* is # false positives *FN* is # false negatives

Confusion matrices

- A model predicts that a patient with cancer has cancer (TP)
- A model predicts that a patient with cancer doesn't have cancer (FN)
- A model predicts that a patient without cancer has cancer (FP)
- A model predicts that a patient without cancer doesn't have cancer (TN)

Class imbalances

- Most of the datasets we've considered are balanced
- They have similar numbers of examples in each class
- What happens if e.g. class 1 is more rare?

Dummy classifiers

- Consider a training set that is 90% class 0 and 10% class 1
- Now consider a dummy classifier that always predicts class 0
- It gets 90% accuracy despite having learnt nothing!
- Always be aware of the dumbest baseline when evaluating models

A training set

Accounting for class imbalances

- Class imbalances are part of life
- The number of positives P is much less than the number of negatives N
- Let's consider the true positive rate
- Let's also consider the false positive
- We want high *TPR* and low *FPR* for finding werewolves (and other things)

Imagine diagnosing a rare disease like *lycanthropy*... hardly anyone has it!

$$TPR = \frac{TP}{P}$$

e rate $FPR = \frac{FP}{N}$

Receiver operating characteristic

• The predictions of a binary classifier are typically made according to

$$\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) \ge \tau \\ 0 & \text{if } f(\mathbf{x}) < \tau \end{cases}$$

- τ is usually 0 but we can calibrate it
- We need to reduce τ to increase our true positive rate
- But we need to increase τ to reduce our false positive rate

Receiver operating characteristic (ROC) curves

- This is a plot of TPR against FPR for different thresholds τ
- A good classifier should hug the top-left corner of this plot
- We can therefore use the area under the curve (AUC) to summarise a classifier's performance when we care about *FPR* and *TPR*
- ROC curves are insensitive to class imbalance

A neat interpretation is that the AUC is the probability that given a randomly sampled positive and negative point, the positive point will have the higher classifier score (Credit: Joe Mellor)

Precision and recall for a fixed threshold

fixed threshold τ

 $REC_{\tau} = -$

were classified correctly for a fixed threshold τ

 $PRE_{\tau} =$

• We want both high recall and precision but there is a balancing act

The F1 score combines precision and recall

• The recall (=TPR) is the fraction of correctly classified +ve examples for a

$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

The precision is the fraction of examples which were classified as +ve that

$$TP + FP$$

into a single number:
$$F1_{\tau} = 2 \frac{PRE_{\tau} \times REC_{\tau}}{PRE_{\tau} + REC_{\tau}}$$

PR curves

- Precision and recall can be plotted against each other as we vary τ
- the combined precision-recall profile of a classifier across thresholds

• The area under this curve is called average precision (AP) and summaries

PR and ROC curves show roughly the same information. See https://pages.cs.wisc.edu/~jdavis/ davisgoadrichcamera2.pdf

Multi-class classification

- We have seen a bunch of ways to score binary classifiers
- What happens if we have classes 0 samples?
- the rest as -ve and combine those scores in some manner

$$s_{macro} = \frac{s_0 + s_1 + \dots + s_{K-1}}{K}$$

$$1, \ldots, K - 1$$
 with $N_0, N_1, \ldots, N_{K-1}$

• We can compute a score per class $s_0, s_1, \ldots, s_{K-1}$ with that class as +ve and

• The macro-average weights each class equally, and the weighted average weights classes according to how many samples there are in that class

$$s_{weighted} = \frac{N_0 s_0 + N_1 s_1 + \dots + N_{K-1} s_{K-1}}{N}$$

Evaluating regression models

- R^2 is the most common score for evaluating regression models
- We aren't going to consider scores other than R^2 and MSE for regression
- Please check out <u>https://scikit-learn.org/stable/modules/</u> model_evaluation.html#regression-metrics to find out about other scores

Decisions, decisions

- Ultimately, your ML model gives you a prediction
- You have to make a **decision** on the basis of that prediction!
- That decision could be "do nothing"

Bayesian decision theory

- We have a binary classifier that <u>predicts</u> $p(y | \mathbf{x})$ where y = 0/1 is notcancer/cancer
- Using this prediction, We can make a decision we can diagnose a patient as having cancer (a = 1) or not having cancer (a = 0)
- We can create a loss matrix where each element quantifies how bad action a is given the true label is y e.g. $L_{0,1} = L(a = 0 | y = 1)$
- The **empirical risk** of taking action 1 is $R(a = 1 | \mathbf{x}) = L(a = 1 | y = 1)p(y = 1 | \mathbf{x}) + L(a = 1 | y = 0)p(y = 0 | \mathbf{x})$
- The empirical risk of taking action 0 is $R(a = 0 | \mathbf{x}) = L(a = 0 | y = 1)p(y = 1 | \mathbf{x}) + L(a = 0 | y = 0)p(y = 0 | \mathbf{x})$
- Take the action with the least risk!

loss matrix L

Bayesian decision theory continued

• If there are *K* classes and *A* possible actions then we have loss matrix $\mathbf{L} \in \mathbb{R}^{K \times A}$ and the empirical risk of action *i* is

$$R(a = i | \mathbf{x}) = \sum_{j} L(a = i | y = j)$$

- But you know how these models work. Can you always trust them?
- Do you really believe that they output reliable probabilities?
- Is this all a bit utilitarian?
- Be careful

 $j)p(y=j|\mathbf{x})$

Summary

- We have looked at the non-parametric k-NN classifier
- We have looked at some generative classifiers
- We have studied the purpose of training, validation, and test splits
- We have considered the problem of model selection
- We have looked at multiple ways to evaluate classifiers
- We saw how to make decisions on the basis of empirical risk

