
Elliot J. Crowley, 18th March 2024

Data Analysis and Machine
Learning 4 (DAML)
Week 9: Gaussian Processes

• We looked at classification and regression trees

• We looked at bagging and boosting as techniques for forming ensembles

Recap

2

x_2 ≤ 0.294
gini = 0.667
samples = 30

value = [10, 10, 10]
class = 0

gini = 0.0
samples = 10

value = [10, 0, 0]
class = 0

True

x_1 ≤ 0.454
gini = 0.5

samples = 20
value = [0, 10, 10]

class = 1

False

gini = 0.0
samples = 10

value = [0, 0, 10]
class = 2

gini = 0.0
samples = 10

value = [0, 10, 0]
class = 1

x_1 ≤ 1.99
squared_error = 12.998

samples = 2500
value = 5.04

x_0 ≤ 1.99
squared_error = 2.16
samples = 1000
value = 1.2

True

x_0 ≤ 1.99
squared_error = 3.84
samples = 1500
value = 7.6

False

squared_error = 0.0
samples = 400
value = 3.0

squared_error = 0.0
samples = 600
value = 0.0

squared_error = 0.0
samples = 600
value = 10.0

squared_error = 0.0
samples = 900
value = 6.0

Gaussian Processes (GPs)

• A non-parametric model that can be used for regression and classification

• We are only going to consider GPs for regression on this course

• Let’s say there is some unknown function we want to model

• If we model this function with a Gaussian process we assume that the value
of the function at any point is a random variable…

• And that any combination such random variables have a multivariate
Gaussian distribution

3

Warning: Gaussian Processes can be conceptually tricky

4

Random variables

“A mathematical formalisation of a quantity or object which depends on
random events”

Wikipedia

“Something that gives you a different value each time you record it”

Elliot J. Crowley

5

This is not a rigorous definition. A
random variable can represent

something that hasn’t happened yet
for instance

Random variables

• The roll of a die can be treated as a random variable

• Pretty much anything we take measurements of (my height, current flow in a
circuit, the mass of a currant bun) can be treated as a random variable

• This is because there will (almost always) be some form of noise giving us
fluctuations between measurements

6

Continuous random variables

• Let be a continuous random variable

• We can describe using a probability density function (pdf)

• so it follows that

• The mean and variance of can be computed from

•

• But what should we use for ?

X ∈ ℝ

X p(x)

P(a < X ≤ b) = ∫
b

a
p(x) dx ∫

∞

−∞
p(x) dx = 1

X p(x)

𝔼[X] = ∫
∞

−∞
xp(x)dx = μ 𝔼[(X − μ)2] = 𝕍[X] = ∫

∞

−∞
(x − μ)2p(x)dx = σ2

p(x)

7

Most of you learnt about
these in EM2B

Shorthand for p(X = x)

The Gaussian (/normal) distribution

• We will default to using Gaussian pdfs

• Gaussians are easy to interpret, mathematically convenient, and can be
justified by invoking the Central limit theorem with some handwaving

• or p(x) = 𝒩(x; μ, σ2) =
1

2πσ2
e− 1

2σ2 (x−μ)2
X ∼ 𝒩(μ, σ2)

8

Bivariate Gaussians

• Suppose we now have two random variables that we care about

• We can assume that they are jointly Gaussian

• Here . I am using this notation to represent
both variances and covariances

X1, X2

p(x1, x2) = 𝒩(x1, x2; μ, Σ)

σi,j = 𝔼[(Xi − 𝔼[Xi])(Xj − 𝔼[Xj])]
(i = j) (i ≠ j)

9

[x1
x2] ∼ 𝒩([μ1

μ2], [σ1,1 σ1,2
σ2,1 σ2,2])

Examples of Bivariate Gaussians

10
Code for plots adapted from https://www.geeksforgeeks.org/visualizing-the-bivariate-gaussian-distribution-in-python/

p(x1, x2) = 𝒩(x1, x2; μ, Σ)

μ = [μ1
μ2] Σ = [σ1,1 σ1,2

σ2,1 σ2,2]

Marginalising and conditioning a Bivariate Gaussian

•

• Marginalising:  
 and . These are Gaussian

• Conditioning:  
What happens if we find out that the exact value for is ? 
We can consider . The probability distribution over conditioned on
knowing . This is also Gaussian! 

[x1
x2] ∼ 𝒩([μ1

μ2], [σ1,1 σ1,2
σ2,1 σ2,2])

p(x1) = 𝒩(x1; μ1 , σ1,1) p(x2) = 𝒩(x2; μ2 , σ2,2)

X1 x1
p(x2 |X1 = x1) x2

X1 = x1

p(x2 |X1 = x1) = 𝒩(x2; μ2 +
σ1,2

σ1,1
(x1 − μ1), σ2,2 −

σ2
1,2

σ1,1
)

11

Conditioning a Bivariate Gaussian example

• Suppose

• We can marginalise to get

• We then find out that is definitely

•

[x1
x2] ∼ 𝒩([0

2], [1 0.9
0.9 1])

p(x2) = 𝒩(x2; 2,1)

x1 −0.5

p(x2 |X1 = − 0.5) = 𝒩(x2; 1.55,0.19)

12

Multivariate Gaussians

• If we have several random variables we care about then we can
combine these into a random vector

• We can assume these are all jointly Gaussian!

•

• Here and

X1, X2, …, XD
x ∈ ℝD

p(x) = 𝒩(x; μ, Σ) =
1

(2π)D/2 |Σ |1/2 exp[−
1
2

(x − μ)⊤Σ−1(x − μ)]

μ =

μ1
μ2
⋮
μD

Σ =

σ1,1 σ1,2 … σ1,D
σ2,1 σ2,2 … σ2,D

⋮ ⋮ ⋱ ⋮
σD,1 σD,2 … σD,D

13

Marginalising a Multivariate Gaussian

If then…

 etc.

x1
x2
⋮
xD

∼ 𝒩(
μ1
μ2
⋮
μD

,

σ1,1 σ1,2 … σ1,D
σ2,1 σ2,2 … σ2,D

⋮ ⋮ ⋱ ⋮
σD,1 σD,2 … σD,D

)

p(x1) = 𝒩(x1; μ1 σ1,1)

p(x2) = 𝒩(x2; μ2 σ2,2)

p(xi) = 𝒩(xi; μi σi,i)

14

Conditioning a Multivariate Gaussian

• Let’s partition as where and

• We can write

• Let’s say we now find out that is exactly … (lazy notation :)). We can
write

x x = [x1, x2]⊤ x1 ∈ ℝD1 x2 ∈ ℝD2

[x1
x2] ∼ 𝒩([μ1

μ2], [
Σ1,1 Σ2,1

Σ1,2 Σ2,2])

x1 x1
p(x2 |x1) = 𝒩(x2; μ2|1, Σ2|1)

15

D = D1 + D2

μ2|1 = μ2 + Σ2,1Σ−1
1,1(x1 − μ1)

Σ2|1 = Σ2,2 − Σ2,1Σ−1
1,1Σ1,2

Gaussian Processes

16

A Gaussian Process (GP)

• Consider modelling some unknown function that maps to

• In Week 5, we used models of the form

• A Gaussian process model is a bit more
complicated:

1. For any set of inputs the function values
 are random variables

2. These random variables have a multivariate Gaussian distribution

x ∈ ℝD ℝ

f(x) = w⊤x

f(x) ∼ GP(m(x), k(x, x′))

M X = [x(1), x(2), …, x(M)]⊤

f = [f(x(1)), f(x(2)), …, f(x(M))]⊤

f ∼ 𝒩(μ, Σ)

17

GPs are defined by their mean and kernel functions

•

• where is a user-supplied mean
function

• where is a user-supplied kernel function

f ∼ 𝒩(μ, Σ)

μ = [m(x(1)), m(x(2)), …, m(x(M))]⊤ m

Σi,j = k(x(i), x(j)) k

18

f(x(1))
f(x(2))

⋮
f(x(M))

∼ 𝒩(
m(x(1))
m(x(2))

⋮
m(x(M))

,

k(x(1), x(1)) k(x(1), x(2)) … k(x(1), x(M))
k(x(2), x(1)) k(x(2), x(2)) … k(x(2), x(M))

⋮ ⋮ ⋱ ⋮
k(x(M), x(1)) k(x(M), x(2)) … k(x(M), x(M))

)

GP prior
• Our choice of mean and kernel function represent our a priori assumptions

about what the function should look like before we see any data

• Without any additional information it’s reasonable to use

• The kernel gives the covariance between and

• It is reasonable to assume that the function values of points close together
will be correlated and those of points further away will be less correlated

• We can embed this assumption using e.g.

f(x)

m(x) = 0

k(x(i), x(j)) f(x(i)) f(x(j))

k(x(i), x(j)) = exp(−
∥x(i) − x(j)∥2

2)

19

Sampling from the GP prior (1D case)
• Consider modelling a mapping using

• (so) and and

• for any . This is our GP prior

• Let’s use and sample vectors from to get
possible functions from our GP prior

ℝ → ℝ f(x) ∼ GP(m(x), k(x, x′))

m(x) = 0 μ = [0 0 …]⊤ = 0 Σi,j = k(x(i), x(j)) = exp(−
(x(i) − x(j))2

2)
f ∼ 𝒩(0, Σ) X

X = [−5, − 4.9, − 4.8,…, + 4.8, + 4.9, + 5]⊤ f 𝒩(0, Σ)

20

A distribution for each function value

• We can marginalise to see what the distribution of function
values is for each input . It is for our prior

• We can plot the mean , and shade (the 95% confidence interval) of
 for each but this isn’t very exciting!

f ∼ 𝒩(0, Σ)
x f(x) ∼ 𝒩(0,1) ∀x

μ μ ± 2σ
f(x) x

21

Conditioning a GP

• Consider some and the distribution over function values at these points

• Consider some other points and the distribution

• By the definition of a GP we can write

• Let’s say we now find out the exact values of . We can condition on these.

• where

X
p(f |X) = 𝒩(f; μX, ΣX,X)

X* p(f* |X*) = 𝒩(f*; μX*
, ΣX*,X*

)

[f
f*] ∼ 𝒩([μX

μX*], [
ΣX,X ΣX,X*

ΣX*,X ΣX*,X*])

f f*

p(f* | f, X, X*) = 𝒩(f*; μX*|X, ΣX*|X)

22

μX*|X = μX*
+ ΣX*,XΣ−1

X,X(f − μX)

ΣX*|X = ΣX*,X*
− ΣX*,XΣ−1

X,XΣX,X*

GPs in the context of ML

• We have &

• Now suppose we are doing regression and have training data
where and

• Let be our training points and be our targets

• We can make function predictions at new points in light of our training data by
looking at . This is our GP posterior

[f
f*] ∼ 𝒩([μX

μX*], [
ΣX,X ΣX,X*

ΣX*,X ΣX*,X*]) p(f* | f, X, X*) = 𝒩(f*; μX*|X, ΣX*|X)

𝔇 = {(x(n), y(n))}N
n=1

x ∈ ℝD y ∈ ℝ

X X = [x(1) x(2) … x(N)]⊤ f
f = [y(1) y(2) … y(N)]⊤

X*
p(f* | f, X, X*)

23

GP regression

• Marginalising for some function value gives a Gaussian
distribution

• The mean of that distribution can be used as a prediction for regression

• The variance quantifies how much uncertainty there is in that prediction

p(f* | f, X, X*)

24

Sampling from the posterior

• is just a multivariate Gaussian we can sample from to get
possible functions

• Notice that all functions we sample interpolate the training points

p(f* | f, X, X*)

25

Noisy measurements?

• Notice that the mean curve perfectly interpolates the training data (here, and
on the previous slide), and that there is zero uncertainty when this happens

• This is a strong requirement, and we might need to accept that our training
targets might be noisy :’(

26

Dealing with noisy measurements

• We can (waves hands) assume that our targets
suffer from additive Gaussian noise i.e.

• For a GP with mean function zero, we have . It follows that

• This gives us

y = [y(1) y(2) … y(N)]⊤

y = f(x) + 𝒩(0, σ2
y)

f ∼ 𝒩(0, ΣX,X)
y ∼ 𝒩(0, ΣX,X + σ2

y I)

[y
f*] ∼ 𝒩(0, [

ΣX,X + σ2
y I ΣX,X*

ΣX*,X ΣX*,X*
])

27

From hereon we assume . This is quite a common
assumption. See https://stats.stackexchange.com/questions/
63251/what-justifies-the-zero-mean-assumption-for-gaussian-

processes for some thoughts on the matter.

m(x) = 0

https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes
https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes
https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes

Conditioning a GP subject to noisy measurements

•

• We can use the conditioning formula to get a GP posterior subject to noisy
measurements

[y
f*] ∼ 𝒩(0, [

ΣX,X + σ2
y I ΣX,X*

ΣX*,X ΣX*,X*
])

28

p(f* |y, X, X*) = 𝒩(f*; μX*|X, ΣX*|X)

μX*|X = ΣX*,X(ΣX,X + σyI)−1y

ΣX*|X = ΣX*,X*
− ΣX*,X(ΣX,X + σyI)−1ΣX,X*

Kernels

• We have used

• This is a simplified version of the RBF or squared exponential kernel

• Notice that it has a hyperparameter

• The output of the kernel must always be

k(x(i), x(j)) = exp(−
∥x(i) − x(j)∥2

2)
kSE(x(i), x(j)) = exp(−

∥x(i) − x(j)∥2

2ℓ2)
ℓ

≥ 0

29

The length scale of the RBF kernel

•

• is known as the lengthscale and determines how wiggly functions drawn
from the GP are

kSE(x(i), x(j)) = exp(−
∥x(i) − x(j)∥2

2ℓ2)
ℓ

30

ℓ = 5

ℓ = 0.1

Scaling the RBF kernel

• It is common to multiple kernels by a hyperparameter (the output variance)

•

• determines the average distance of function values from the mean

σ2

k(x(i), x(j)) = σ2 exp(−
∥x(i) − x(j)∥2

2ℓ2)
σ2

31

σ2 = 10

σ2 = 0.1

Kernels are important

• The choice of kernel is the most important factor for determining the
behaviour of a GP

• It is us providing our assumptions about the problem!

32

Predicting house price from location:

Prices will correlate for houses that are near to
each other.

RBF kernel makes sense

Predicting the temperature given the date:

There is seasonality. December one year
correlates to December the next even though

they are far away!

We need a periodic kernel

The period kernel (Exp-Sine-Squared)

•

• behave the same as for the RBF kernel. is the periodicity

kP(x(i), x(j)) = exp(−
2 sin2(π∥x(i) − x(j)∥

p)

ℓ2)
ℓ p

33

p = 5

p = 2

• See https://www.cs.toronto.edu/~duvenaud/cookbook/ for all  
the kernels you could ever care to know about

• In the above, all kernels have a scaling factor

• Sklearn kernels don’t by default, just be aware of this!

There are lots of others kernels!

34

https://www.cs.toronto.edu/~duvenaud/cookbook/

Hyperparameters again!

• Kernels have hyperparameters

• We could do a grid search to find the best hyperparameters to minimise e.g.
MSE on a validation set, but this would be slow. Is there a faster way? (Yes)

• Let’s find the hyperparameters that maximise the likelihood of our targets,
given our data:

• With noisy measurements we have defined

• In the expression above, the dependence on was implicit. Let’s write the
whole thing explicitly:

p(y |X)

y ∼ 𝒩(0, ΣX,X + σ2
y I)

X
p(y |X) = 𝒩(y; 0, ΣX,X + σ2

y I)

35

Optimisation

• We have

• Collecting our hyperparameters into a vector , we want to solve

• This is equivalent to solving

• This can be achieved using a gradient-based optimiser for differentiable
kernels

p(y |X) = 𝒩(y; 0, ΣX,X + σ2
y I)

θ
maximise

θ
p(y |X)

minimise
θ

− log p(y |X)

36

log p(y |X) = −
1
2

y⊤(ΣX,X + σ2
y I)−1y −

1
2

log |ΣX,X + σ2
y I | −

N
2

log 2π
This quantity is known as

the log marginal likelihood
because we’ve integrated

out over f

Minimising the negative log-marginal-likelihood

• When you fit a GP to data in sklearn, an optimiser is used to find the kernel
hyperparameters that minimise the negative log-marginal-likelihood on train

• There may be local minima…

• We can run it multiple times from 
different initial positions

• Minimising this objective is fast but 
not necessarily best

37

GP example

• Kernels can be combined to form new kernels

• We’ll look at a famous GP example: Predicting monthly CO concentrations
(in ppm) from the Mauna Loa Observatory in Hawaii

2

38
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html#sphx-glr-auto-examples-gaussian-process-plot-gpr-co2-py

GP example

• First, we’ll make our data zero mean (but show the true value in the plot)

• Let’s naively assume there is minimal measurement noise ()

• Points close to each other are correlated so let’s use an RBF kernel

σy = 10−3

39

k = σ2kRBF(ℓ)

ℓ = 10−5

I think it broke.

σ = 0.999

GP example

• There is going to be measurement noise, but instead of guessing we can add
a white noise kernel and fit as a hyperparameter knoise(x, x′) = σ2

n𝕀(x = x′) σn

40

k = σ2kRBF(ℓ) + knoise(σn)

Better. But it doesn’t wiggle.

ℓ = 46
σ = 3.92

σn = 0.0319

GP example

• Our model can deal with the rising trend but not the seasonal variation

• Let’s add a periodic kernel and keep the length scale fixed as 1 year because
we know that this is the frequency!

• I also fixed the noise to stop it overfitting (GPs are fairly hacky)

41

k = σ2
RBFkRBF(ℓRBF) + knoise(σn = 3.92) + σ2

PkP(ℓP = 1)

That’ll do

ℓRBF = 50.5
σRBF = 4.6

σP = 0.485

The pros and cons of Gaussian processes

• Pro: They give you confidence intervals

• Pro: They work well in the low-data setting

• Pro: Providing a kernel can be more intuitive for baking in assumptions about
a problem that specifying a functional form from inputs to outputs

• Con: Fitting a GP involves inverting a matrix. This is so is very
expensive when there is lots of data

• Con: They assume Gaussian noise on the measurements, which might not be
true

• Con: Finding the right kernel can be tricky

O(n3)

42

Summary

• You have revised random variables and Gaussian pdfs

• You have learnt that Gaussian processes (GPs) model function values as
random variables that have a Multivariate Gaussian distribution

• You have seen how this distribution is defined in terms of a mean function
(which is usually zero) and a kernel function

• You have learnt how to condition a GP on training data for prediction

• You have seen that kernels have hyperparameters which affect their behaviour

• You have seen that these can be optimised by maximising the marginal
likelihood

43

