
Elliot J. Crowley, 18th March 2024

Data Analysis and Machine 
Learning 4 (DAML)
Week 9: Gaussian Processes



• We looked at classification and regression trees


• We looked at bagging and boosting as techniques for forming ensembles

Recap
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x_2 ≤ 0.294
gini = 0.667
samples = 30

value = [10, 10, 10]
class = 0

gini = 0.0
samples = 10

value = [10, 0, 0]
class = 0

True

x_1 ≤ 0.454
gini = 0.5

samples = 20
value = [0, 10, 10]

class = 1

False

gini = 0.0
samples = 10

value = [0, 0, 10]
class = 2

gini = 0.0
samples = 10

value = [0, 10, 0]
class = 1

x_1 ≤ 1.99
squared_error = 12.998

samples = 2500
value = 5.04

x_0 ≤ 1.99
squared_error = 2.16
samples = 1000
value = 1.2

True

x_0 ≤ 1.99
squared_error = 3.84
samples = 1500
value = 7.6

False

squared_error = 0.0
samples = 400
value = 3.0

squared_error = 0.0
samples = 600
value = 0.0

squared_error = 0.0
samples = 600
value = 10.0

squared_error = 0.0
samples = 900
value = 6.0



Gaussian Processes (GPs)

• A non-parametric model that can be used for regression and classification


• We are only going to consider GPs for regression on this course 

• Let’s say there is some unknown function we want to model 


• If we model this function with a Gaussian process we assume that the value 
of the function at any point is a random variable…


• And that any combination such random variables have a multivariate 
Gaussian distribution
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Warning: Gaussian Processes can be conceptually tricky
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Random variables

“A mathematical formalisation of a quantity or object which depends on 
random events”

Wikipedia

“Something that gives you a different value each time you record it”

Elliot J. Crowley
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This is not a rigorous definition. A 
random variable can represent 

something that hasn’t happened yet 
for instance



Random variables

• The roll of a die can be treated as a random variable 


• Pretty much anything we take measurements of (my height, current flow in a 
circuit, the mass of a currant bun) can be treated as a random variable


• This is because there will (almost always) be some form of noise giving us 
fluctuations between measurements
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Continuous random variables

• Let  be a continuous random variable


• We can describe  using a probability density function (pdf)  


•  so it follows that 


• The mean and variance of  can be computed from 


• 


• But what should we use for ?

X ∈ ℝ

X p(x)

P(a < X ≤ b) = ∫
b

a
p(x) dx ∫

∞

−∞
p(x) dx = 1

X p(x)

𝔼[X] = ∫
∞

−∞
xp(x)dx = μ 𝔼[(X − μ)2] = 𝕍[X] = ∫

∞

−∞
(x − μ)2p(x)dx = σ2

p(x)
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Most of you learnt about 
these in EM2B

Shorthand for p(X = x)



The Gaussian (/normal) distribution

• We will default to using Gaussian pdfs 


• Gaussians are easy to interpret, mathematically convenient, and can be 
justified by invoking the Central limit theorem with some handwaving


•      or                       p(x) = 𝒩(x; μ, σ2) =
1

2πσ2
e− 1

2σ2 (x−μ)2
X ∼ 𝒩(μ, σ2)
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Bivariate Gaussians 

• Suppose we now have two random variables  that we care about


• We can assume that they are jointly Gaussian 


• Here . I am using this notation to represent 
both variances  and covariances 

X1, X2

p(x1, x2) = 𝒩(x1, x2; μ, Σ)

σi,j = 𝔼[(Xi − 𝔼[Xi])(Xj − 𝔼[Xj])]
(i = j) (i ≠ j)
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[x1
x2] ∼ 𝒩([μ1

μ2], [σ1,1 σ1,2
σ2,1 σ2,2])



Examples of Bivariate Gaussians 

10
Code for plots adapted from https://www.geeksforgeeks.org/visualizing-the-bivariate-gaussian-distribution-in-python/

p(x1, x2) = 𝒩(x1, x2; μ, Σ)

μ = [μ1
μ2] Σ = [σ1,1 σ1,2

σ2,1 σ2,2]



Marginalising and conditioning a Bivariate Gaussian

•  


• Marginalising:  
 and . These are Gaussian


• Conditioning:  
What happens if we find out that the exact value for  is ? 
We can consider . The probability distribution over  conditioned on 
knowing . This is also Gaussian! 

[x1
x2] ∼ 𝒩([μ1

μ2], [σ1,1 σ1,2
σ2,1 σ2,2])

p(x1) = 𝒩(x1; μ1 , σ1,1) p(x2) = 𝒩(x2; μ2 , σ2,2)

X1 x1
p(x2 |X1 = x1) x2

X1 = x1

p(x2 |X1 = x1) = 𝒩(x2; μ2 +
σ1,2

σ1,1
(x1 − μ1), σ2,2 −

σ2
1,2

σ1,1
)
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Conditioning a Bivariate Gaussian example

• Suppose 


• We can marginalise to get 


• We then find out that  is definitely 


•

[x1
x2] ∼ 𝒩([0

2], [ 1 0.9
0.9 1 ])

p(x2) = 𝒩(x2; 2,1)

x1 −0.5

p(x2 |X1 = − 0.5) = 𝒩(x2; 1.55,0.19)
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Multivariate Gaussians

• If we have several random variables we care about  then we can 
combine these into a random vector 


• We can assume these are all jointly Gaussian!


• 


• Here  and 

X1, X2, …, XD
x ∈ ℝD

p(x) = 𝒩(x; μ, Σ) =
1

(2π)D/2 |Σ |1/2 exp[ −
1
2

(x − μ)⊤Σ−1(x − μ)]

μ =

μ1
μ2
⋮
μD

Σ =

σ1,1 σ1,2 … σ1,D
σ2,1 σ2,2 … σ2,D

⋮ ⋮ ⋱ ⋮
σD,1 σD,2 … σD,D
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Marginalising a Multivariate Gaussian

If  then…








 etc.


x1
x2
⋮
xD

∼ 𝒩(
μ1
μ2
⋮
μD

,

σ1,1 σ1,2 … σ1,D
σ2,1 σ2,2 … σ2,D

⋮ ⋮ ⋱ ⋮
σD,1 σD,2 … σD,D

)

p(x1) = 𝒩(x1; μ1 σ1,1)

p(x2) = 𝒩(x2; μ2 σ2,2)

p(xi) = 𝒩(xi; μi σi,i)
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Conditioning a Multivariate Gaussian

• Let’s partition  as  where  and 


• We can write  


• Let’s say we now find out that  is exactly …  (lazy notation :)). We can 
write 


x x = [x1, x2]⊤ x1 ∈ ℝD1 x2 ∈ ℝD2

[x1
x2] ∼ 𝒩([μ1

μ2], [
Σ1,1 Σ2,1

Σ1,2 Σ2,2])

x1 x1
p(x2 |x1) = 𝒩(x2; μ2|1, Σ2|1)
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D = D1 + D2

μ2|1 = μ2 + Σ2,1Σ−1
1,1(x1 − μ1)

Σ2|1 = Σ2,2 − Σ2,1Σ−1
1,1Σ1,2



Gaussian Processes
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A Gaussian Process (GP)

• Consider modelling some unknown function that maps  to 


• In Week 5, we used models of the form 


• A Gaussian process model  is a bit more 
complicated:


1. For any set of  inputs  the function values 
 are random variables 

2. These random variables have a multivariate Gaussian distribution 

x ∈ ℝD ℝ

f(x) = w⊤x

f(x) ∼ GP(m(x), k(x, x′ ))

M X = [x(1), x(2), …, x(M)]⊤

f = [f(x(1)), f(x(2)), …, f(x(M))]⊤

f ∼ 𝒩(μ, Σ)
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GPs are defined by their mean and kernel functions

• 


•  where  is a user-supplied mean 
function 


•  where  is a user-supplied kernel function

f ∼ 𝒩(μ, Σ)

μ = [m(x(1)), m(x(2)), …, m(x(M))]⊤ m

Σi,j = k(x(i), x( j)) k
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f(x(1))
f(x(2))

⋮
f(x(M))

∼ 𝒩(
m(x(1))
m(x(2))

⋮
m(x(M))

,

k(x(1), x(1)) k(x(1), x(2)) … k(x(1), x(M))
k(x(2), x(1)) k(x(2), x(2)) … k(x(2), x(M))

⋮ ⋮ ⋱ ⋮
k(x(M), x(1)) k(x(M), x(2)) … k(x(M), x(M))

)



GP prior 
• Our choice of mean and kernel function represent our a priori assumptions 

about what the function  should look like before we see any data


• Without any additional information it’s reasonable to use 


• The kernel  gives the covariance between  and 


• It is reasonable to assume that the function values of points close together 
will be correlated and those of points further away will be less correlated


• We can embed this assumption using e.g. 

f(x)

m(x) = 0

k(x(i), x( j)) f(x(i)) f(x( j))

k(x(i), x( j)) = exp(−
∥x(i) − x( j)∥2

2 )
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Sampling from the GP prior (1D case)
• Consider modelling a  mapping using  


•  (so ) and and 


•  for any . This is our GP prior


• Let’s use  and sample  vectors from  to get 
possible functions from our GP prior


ℝ → ℝ f(x) ∼ GP(m(x), k(x, x′ ))

m(x) = 0 μ = [0 0 …]⊤ = 0 Σi,j = k(x(i), x( j)) = exp(−
(x(i) − x( j))2

2 )
f ∼ 𝒩(0, Σ) X

X = [−5, − 4.9, − 4.8,…, + 4.8, + 4.9, + 5]⊤ f 𝒩(0, Σ)
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A distribution for each function value

• We can marginalise  to see what the distribution of function 
values is for each input . It is  for our prior


• We can plot the mean , and shade  (the 95% confidence interval) of 
 for each  but this isn’t very exciting!


f ∼ 𝒩(0, Σ)
x f(x) ∼ 𝒩(0,1) ∀x

μ μ ± 2σ
f(x) x
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Conditioning a GP

• Consider some  and the distribution over function values at these points 



• Consider some other points  and the distribution 


• By the definition of a GP we can write 


• Let’s say we now find out the exact values of . We can condition  on these.


•  where 

X
p(f |X) = 𝒩(f; μX, ΣX,X)

X* p(f* |X*) = 𝒩(f*; μX*
, ΣX*,X*

)

[ f
f*] ∼ 𝒩([ μX

μX*], [
ΣX,X ΣX,X*

ΣX*,X ΣX*,X*])

f f*

p(f* | f, X, X*) = 𝒩(f*; μX*|X, ΣX*|X)
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μX*|X = μX*
+ ΣX*,XΣ−1

X,X(f − μX)

ΣX*|X = ΣX*,X*
− ΣX*,XΣ−1

X,XΣX,X*



GPs in the context of ML

• We have & 


• Now suppose we are doing regression and have training data  
where  and 


• Let  be our training points  and  be our targets 



• We can make function predictions at new points  in light of our training data by 
looking at . This is our GP posterior

[ f
f*] ∼ 𝒩([ μX

μX*], [
ΣX,X ΣX,X*

ΣX*,X ΣX*,X*]) p(f* | f, X, X*) = 𝒩(f*; μX*|X, ΣX*|X)

𝔇 = {(x(n), y(n))}N
n=1

x ∈ ℝD y ∈ ℝ

X X = [x(1) x(2) … x(N)]⊤ f
f = [y(1) y(2) … y(N)]⊤

X*
p(f* | f, X, X*)
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GP regression

• Marginalising  for some function value gives a Gaussian 
distribution


• The mean of that distribution can be used as a prediction for regression


• The variance quantifies how much uncertainty there is in that prediction

p(f* | f, X, X*)

24



Sampling from the posterior

•  is just a multivariate Gaussian we can sample from to get 
possible functions


• Notice that all functions we sample interpolate the training points

p(f* | f, X, X*)

25



Noisy measurements?

• Notice that the mean curve perfectly interpolates the training data (here, and 
on the previous slide), and that there is zero uncertainty when this happens


• This is a strong requirement, and we might need to accept that our training 
targets might be noisy :’( 
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Dealing with noisy measurements

• We can (waves hands) assume that our targets 
suffer from additive Gaussian noise i.e.  


• For a GP with mean function zero, we have . It follows that 



• This gives us  

y = [y(1) y(2) … y(N)]⊤

y = f(x) + 𝒩(0, σ2
y )

f ∼ 𝒩(0, ΣX,X)
y ∼ 𝒩(0, ΣX,X + σ2

y I)

[y
f*] ∼ 𝒩(0, [

ΣX,X + σ2
y I ΣX,X*

ΣX*,X ΣX*,X*
])
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From hereon we assume . This is quite a common 
assumption. See https://stats.stackexchange.com/questions/
63251/what-justifies-the-zero-mean-assumption-for-gaussian-

processes for some thoughts on the matter.

m(x) = 0

https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes
https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes
https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes


Conditioning a GP subject to noisy measurements

•  


• We can use the conditioning formula to get a GP posterior subject to noisy 
measurements

[y
f*] ∼ 𝒩(0, [

ΣX,X + σ2
y I ΣX,X*

ΣX*,X ΣX*,X*
])

28

p(f* |y, X, X*) = 𝒩(f*; μX*|X, ΣX*|X)

μX*|X = ΣX*,X(ΣX,X + σyI)−1y

ΣX*|X = ΣX*,X*
− ΣX*,X(ΣX,X + σyI)−1ΣX,X*



Kernels

• We have used 


• This is a simplified version of the RBF or squared exponential kernel 




• Notice that it has a hyperparameter 


• The output of the kernel must always be 

k(x(i), x( j)) = exp(−
∥x(i) − x( j)∥2

2 )
kSE(x(i), x( j)) = exp(−

∥x(i) − x( j)∥2

2ℓ2 )
ℓ

≥ 0
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The length scale of the RBF kernel

• 


•  is known as the lengthscale and determines how wiggly functions drawn 
from the GP are

kSE(x(i), x( j)) = exp(−
∥x(i) − x( j)∥2

2ℓ2 )
ℓ

30

ℓ = 5

ℓ = 0.1



Scaling the RBF kernel

• It is common to multiple kernels by a hyperparameter  (the output variance)


• 


•  determines the average distance of function values from the mean

σ2

k(x(i), x( j)) = σ2 exp(−
∥x(i) − x( j)∥2

2ℓ2 )
σ2

31

σ2 = 10

σ2 = 0.1



Kernels are important

• The choice of kernel is the most important factor for determining the 
behaviour of a GP


• It is us providing our assumptions about the problem!
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Predicting house price from location: 

Prices will correlate for houses that are near to 
each other. 

RBF kernel makes sense

Predicting the temperature given the date: 

There is seasonality. December one year 
correlates to December the next even though 

they are far away! 

We need a periodic kernel



The period kernel (Exp-Sine-Squared)

• 


•  behave the same as for the RBF kernel.  is the periodicity

kP(x(i), x( j)) = exp(−
2 sin2( π∥x(i) − x( j)∥

p )

ℓ2 )
ℓ p
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p = 5

p = 2



• See https://www.cs.toronto.edu/~duvenaud/cookbook/ for all  
the kernels you could ever care to know about


• In the above, all kernels have a scaling factor


• Sklearn kernels don’t by default, just be aware of this!

There are lots of others kernels!
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https://www.cs.toronto.edu/~duvenaud/cookbook/


Hyperparameters again!

• Kernels have hyperparameters


• We could do a grid search to find the best hyperparameters to minimise e.g. 
MSE on a validation set, but this would be slow. Is there a faster way? (Yes)


• Let’s find the hyperparameters that maximise the likelihood of our targets, 
given our data: 


• With noisy measurements we have defined 


• In the expression above, the dependence on  was implicit. Let’s write the 
whole thing explicitly: 

p(y |X)

y ∼ 𝒩(0, ΣX,X + σ2
y I)

X
p(y |X) = 𝒩(y; 0, ΣX,X + σ2

y I)
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Optimisation

• We have  


• Collecting our hyperparameters into a vector , we want to solve 



• This is equivalent to solving 


• This can be achieved using a gradient-based optimiser for differentiable 
kernels

p(y |X) = 𝒩(y; 0, ΣX,X + σ2
y I)

θ
maximise

θ
p(y |X)

minimise
θ

− log p(y |X)

36

log p(y |X) = −
1
2

y⊤(ΣX,X + σ2
y I)−1y −

1
2

log |ΣX,X + σ2
y I | −

N
2

log 2π
This quantity is known as 

the log marginal likelihood 
because we’ve integrated 

out over f



Minimising the negative log-marginal-likelihood

• When you fit a GP to data in sklearn, an optimiser is used to find the kernel 
hyperparameters that minimise the negative log-marginal-likelihood on train


• There may be local minima…


• We can run it multiple times from 
different initial positions


• Minimising this objective is fast but 
not necessarily best
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GP example

• Kernels can be combined to form new kernels


• We’ll look at a famous GP example: Predicting monthly CO  concentrations 
(in ppm) from the Mauna Loa Observatory in Hawaii 

2

38
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html#sphx-glr-auto-examples-gaussian-process-plot-gpr-co2-py



GP example

• First, we’ll make our data zero mean (but show the true value in the plot)


• Let’s naively assume there is minimal measurement noise ( ) 


• Points close to each other are correlated so let’s use an RBF kernel

σy = 10−3
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k = σ2kRBF(ℓ)

ℓ = 10−5

I think it broke.

σ = 0.999



GP example

• There is going to be measurement noise, but instead of guessing we can add 
a white noise kernel  and fit  as a hyperparameter knoise(x, x′ ) = σ2

n𝕀(x = x′ ) σn

40

k = σ2kRBF(ℓ) + knoise(σn)

Better. But it doesn’t wiggle.

ℓ = 46
σ = 3.92

σn = 0.0319



GP example

• Our model can deal with the rising trend but not the seasonal variation


• Let’s add a periodic kernel and keep the length scale fixed as 1 year because 
we know that this is the frequency!


• I also fixed the noise to stop it overfitting (GPs are fairly hacky)

41

k = σ2
RBFkRBF(ℓRBF) + knoise(σn = 3.92) + σ2

PkP(ℓP = 1)

That’ll do

ℓRBF = 50.5
σRBF = 4.6

σP = 0.485



The pros and cons of Gaussian processes

• Pro: They give you confidence intervals 


• Pro: They work well in the low-data setting


• Pro: Providing a kernel can be more intuitive for baking in assumptions about 
a problem that specifying a functional form from inputs to outputs 


• Con: Fitting a GP involves inverting a matrix. This is  so is very 
expensive when there is lots of data


• Con: They assume Gaussian noise on the measurements, which might not be 
true


• Con: Finding the right kernel can be tricky

O(n3)
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Summary

• You have revised random variables and Gaussian pdfs


• You have learnt that Gaussian processes (GPs) model function values as 
random variables that have a Multivariate Gaussian distribution


• You have seen how this distribution is defined in terms of a mean function 
(which is usually zero) and a kernel function


• You have learnt how to condition a GP on training data for prediction


• You have seen that kernels have hyperparameters which affect their behaviour 


• You have seen that these can be optimised by maximising the marginal 
likelihood 
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