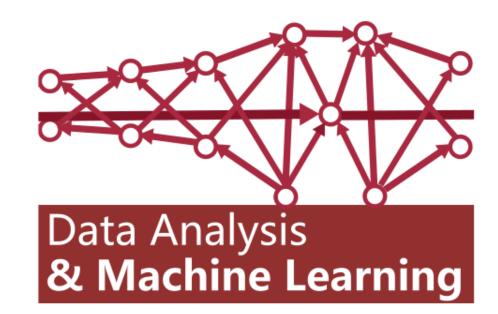
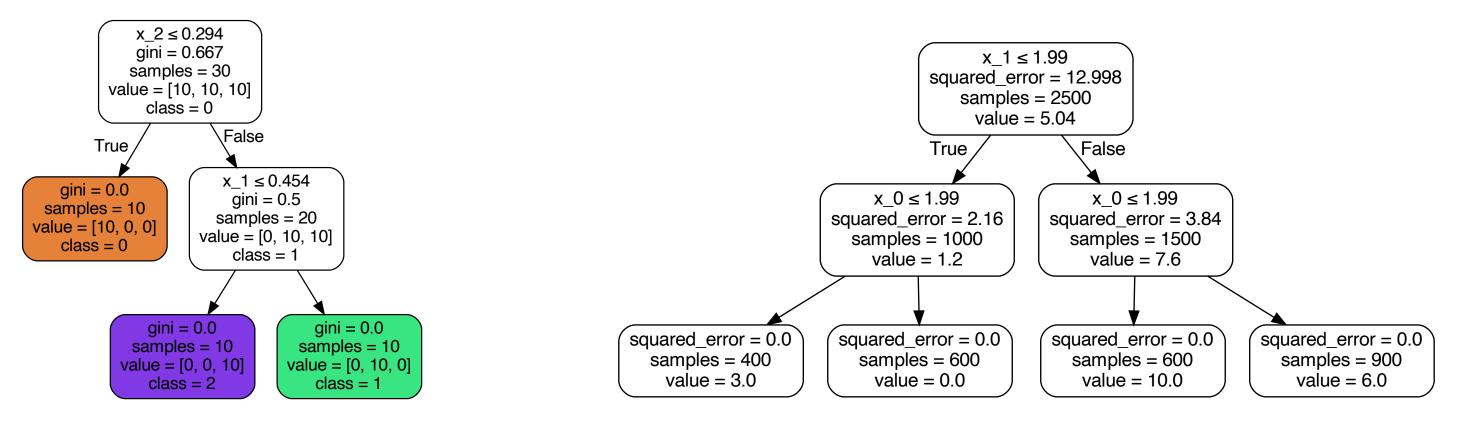
Data Analysis and Machine Learning 4 (DAML) Week 9: Gaussian Processes

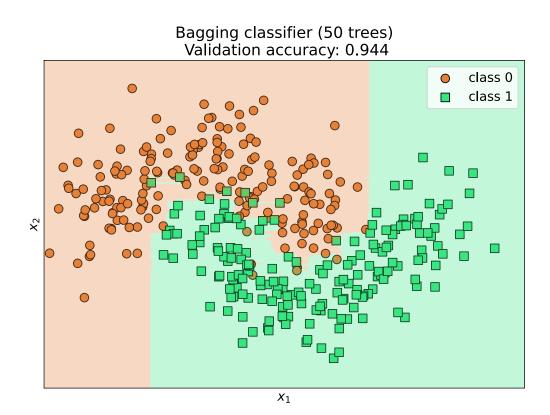
Elliot J. Crowley, 18th March 2024

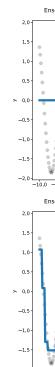


Recap

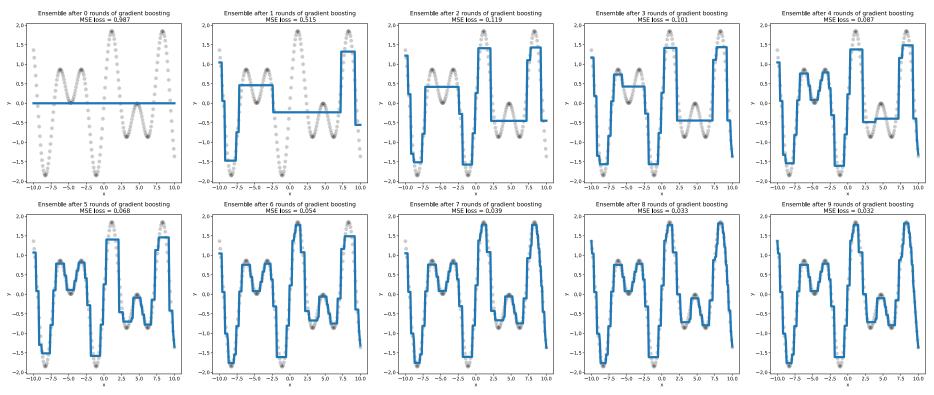
We looked at classification and regression trees







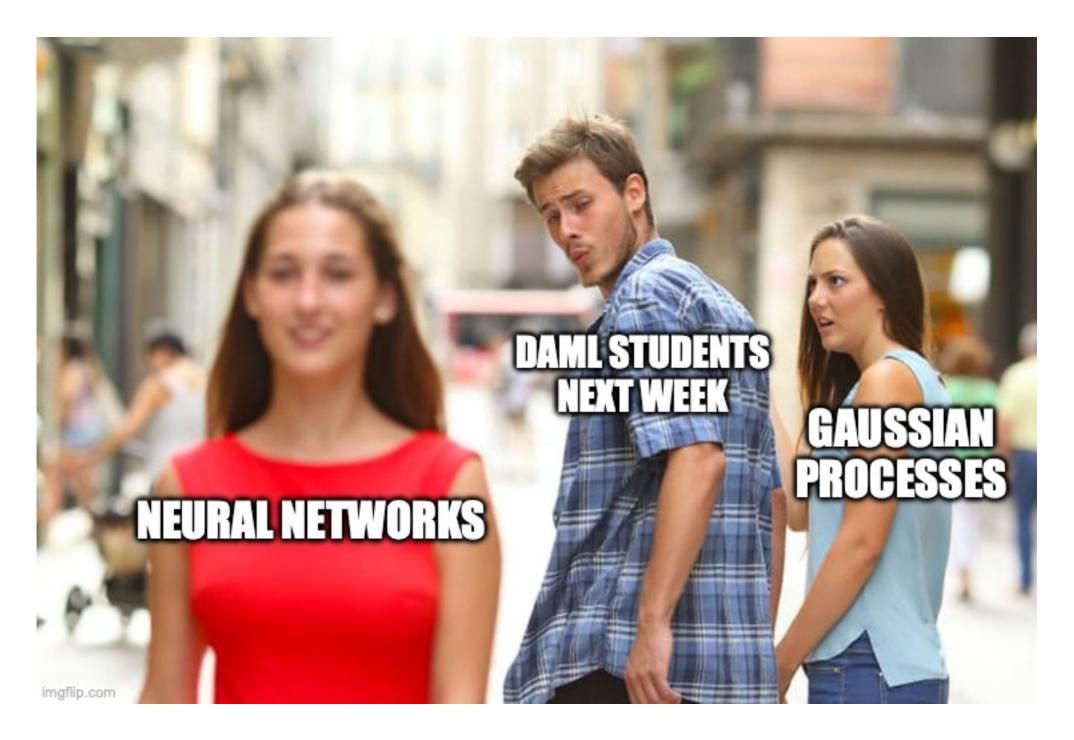
We looked at bagging and boosting as techniques for forming ensembles



Gaussian Processes (GPs)

- A non-parametric model that can be used for regression and classification
- We are only going to consider GPs for regression on this course
- Let's say there is some unknown function we want to model
- If we model this function with a Gaussian process we assume that the value of the function at any point is a random variable...
- And that any combination such random variables have a multivariate Gaussian distribution

Warning: Gaussian Processes can be conceptually tricky



Random variables

"A mathematical formalisation of a quantity or object which depends on random events"

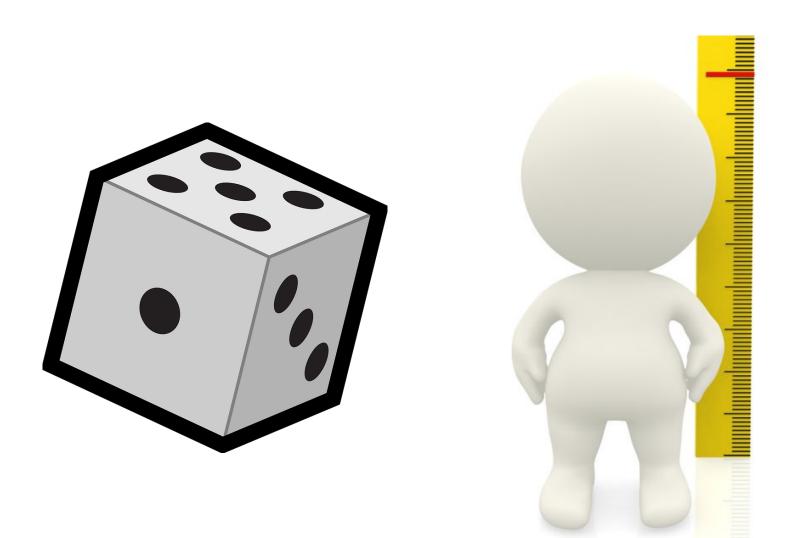
Wikipedia

"Something that gives you a different value each time you record it" Elliot J. Crowley

This is not a rigorous definition. A random variable can represent something that hasn't happened yet for instance

Random variables

- The roll of a die can be treated as a random variable
- fluctuations between measurements



• Pretty much anything we take measurements of (my height, current flow in a circuit, the mass of a currant bun) can be treated as a random variable

• This is because there will (almost always) be some form of noise giving us

Continuous random variables

- Let $X \in \mathbb{R}$ be a continuous random variable
- We can describe X using a probability density function (pdf) p(x)

•
$$P(a < X \le b) = \int_{a}^{b} p(x) dx$$
 so it follows that $\int_{-\infty}^{\infty} p(x) dx = 1$

• The mean and variance of X can be computed from p(x)

•
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} xp(x)dx = \mu \qquad \mathbb{E}[(X-\mu)^2] = \mathbb{V}[X] = \int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx = \sigma^2$$

• But what should we use for p(x)?

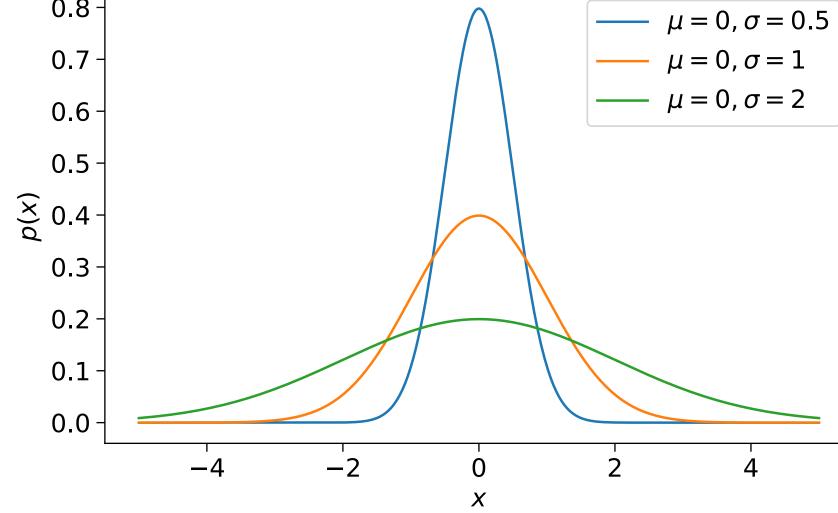
Most of you learnt about these in EM2B

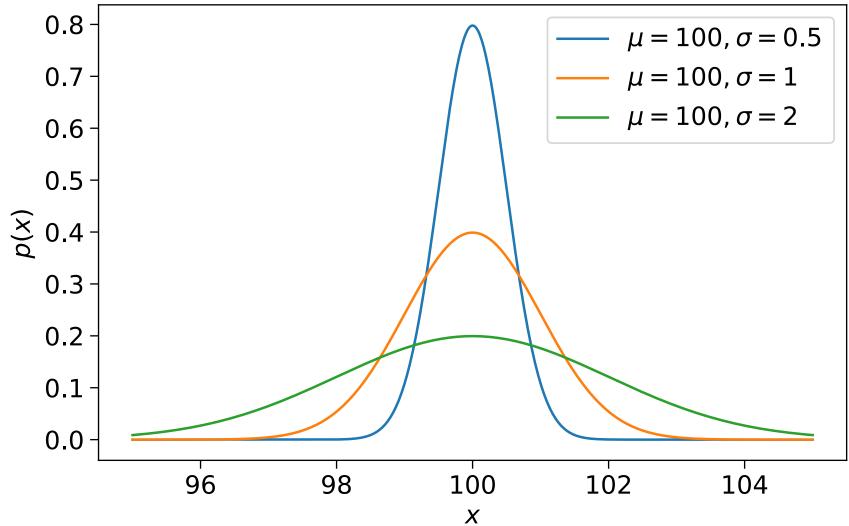
Shorthand for p(X = x)

The Gaussian (/normal) distribution

- We will default to using Gaussian pdfs
- Gaussians are easy to interpret, mathematically convenient, and can be justified by invoking the Central limit theorem with some handwaving

•
$$p(x) = \mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
 or $X \sim \mathcal{N}(\mu,\sigma^2)$





Bivariate Gaussians

- Suppose we now have two random variables X_1, X_2 that we care about
- We can assume that they are jointly Gaussian $p(x_1, x_2) = \mathcal{N}(x_1, x_2; \mu, \Sigma)$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \right.$$

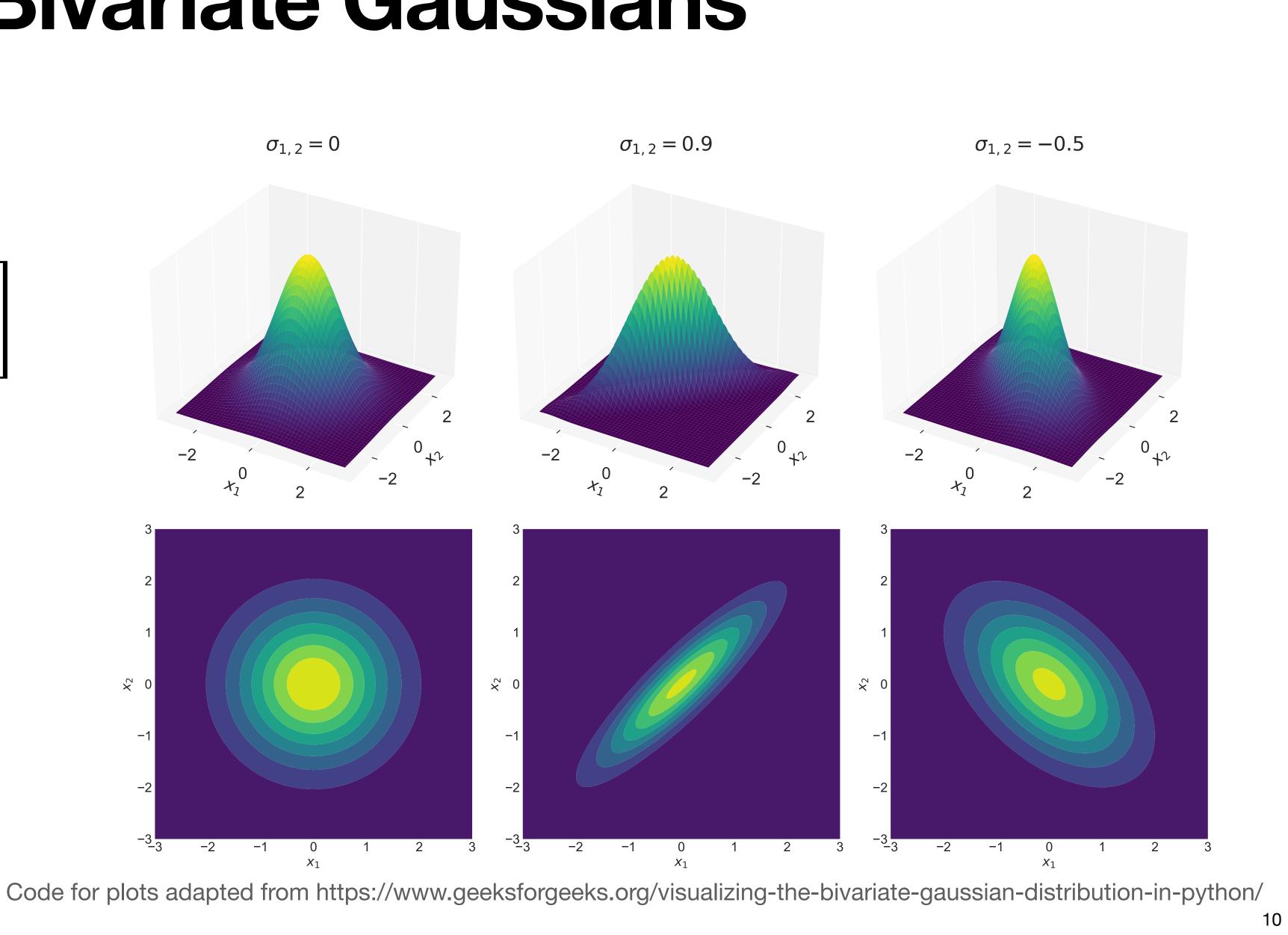
both variances (i = j) and covariances $(i \neq j)$

$$\begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2,2} \end{bmatrix}$$

• Here $\sigma_{i,j} = \mathbb{E}\left[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j]) \right]$. I am using this notation to represent

Examples of Bivariate Gaussians

$$p(x_1, x_2) = \mathcal{N}(x_1, x_2; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2,2} \end{bmatrix}$$



Marginalising and conditioning a Bivariate Gaussian

•
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2,2} \end{bmatrix} \right)$$

- <u>Marginalising</u>: $p(x_1) = \mathcal{N}(x_1; \mu_1, \sigma_{1,1}) \text{ and } p(x_2) = \mathcal{N}(x_1; \mu_1, \sigma_{1,1})$
- **Conditioning:**

What happens if we find out that the exact value for X_1 is x_1 ? knowing $X_1 = x_1$. This is also Gaussian!

$$p(x_2 | X_1 = x_1) = \mathcal{N}(x_2; \mu_2 + \frac{\sigma_{1,2}}{\sigma_{1,1}}(x_1 - \mu_1), \sigma_{2,2} - \frac{\sigma_{1,2}^2}{\sigma_{1,1}})$$

$$\mathcal{N}(x_2; \mu_2, \sigma_{2,2})$$
. These are Gaussian

We can consider $p(x_2 | X_1 = x_1)$. The probability distribution over x_2 conditioned on

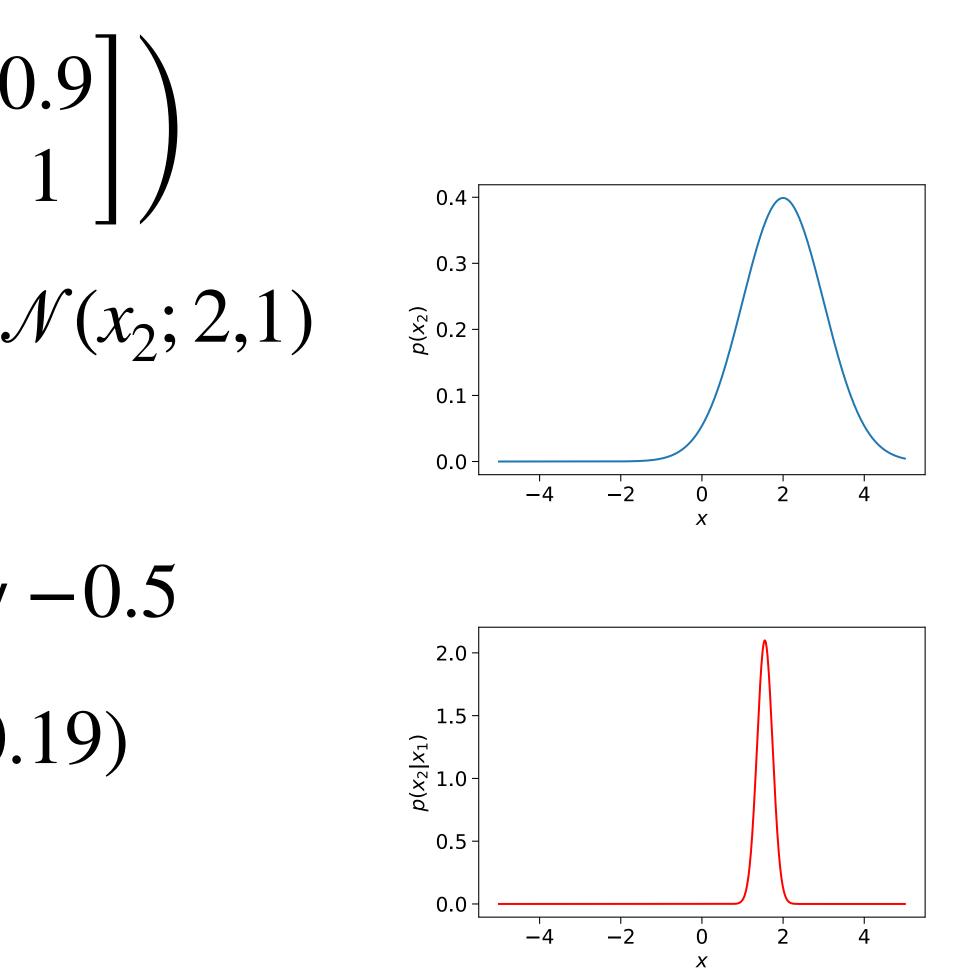
11

Conditioning a Bivariate Gaussian example

• Suppose $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix} \right)$

• We can marginalise to get $p(x_2) = \mathcal{N}(x_2; 2, 1)$

- We then find out that x_1 is definitely -0.5
- $p(x_2|X_1 = -0.5) = \mathcal{N}(x_2; 1.55, 0.19)$



12

Multivariate Gaussians

- If we have several random variables we care about $X_1, X_2, ..., X_D$ then we can combine these into a random vector $\mathbf{x} \in \mathbb{R}^D$
- We can assume these are all jointly Gaussian!

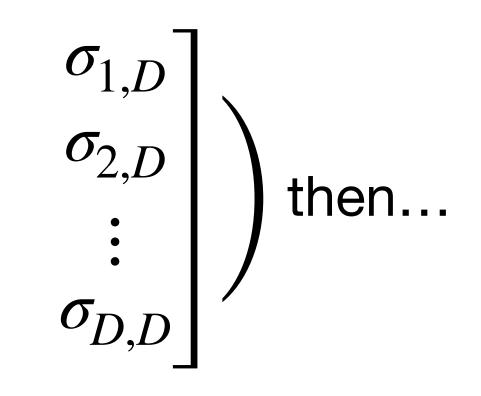
•
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

• Here $\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_D \end{bmatrix}$ and $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} & \cdots & \sigma_{1,D} \\ \sigma_{2,1} & \sigma_{2,2} & \cdots & \sigma_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{D,1} & \sigma_{D,2} & \cdots & \sigma_{D,D} \end{bmatrix}$

Marginalising a Multivariate Gaussian

$$\begin{split} & \text{If} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_D \end{bmatrix}, \begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} & \cdots \\ \sigma_{2,1} & \sigma_{2,2} & \cdots \\ \vdots & \vdots & \ddots \\ \sigma_{D,1} & \sigma_{D,2} & \cdots \\ \end{split} \right) \end{split}$$

$$p(x_1) = \mathcal{N}(x_1; \mu_1 \sigma_{1,1})$$
$$p(x_2) = \mathcal{N}(x_2; \mu_2 \sigma_{2,2})$$
$$p(x_i) = \mathcal{N}(x_i; \mu_i \sigma_{i,i}) \text{ etc.}$$



14

Conditioning a Multivariate Gaussian

- Let's partition \mathbf{x} as $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]^{\mathsf{T}}$ where $\mathbf{x}_1 \in \mathbb{R}^{D_1}$ and $\mathbf{x}_2 \in \mathbb{R}^{D_2}$
- We can write $\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{1,1} & \boldsymbol{\Sigma}_{2,1} \\ \boldsymbol{\Sigma}_{1,2} & \boldsymbol{\Sigma}_{2,2} \end{bmatrix})$
- Let's say we now find out that \mathbf{x}_1 is write $p(\mathbf{x}_2 | \mathbf{x}_1) = \mathcal{N}(\mathbf{x}_2; \boldsymbol{\mu}_{2|1}, \boldsymbol{\Sigma}_{2|1})$

$$\mu_{2|1} = \mu_2 + \Sigma_{2,1} \Sigma_{1,1}^{-1} (\mathbf{x}_1 - \mu_1)$$

$$\Sigma_{2|1} = \Sigma_{2,2} - \Sigma_{2,1} \Sigma_{1,1}^{-1} \Sigma_{1,2}$$

 $D = D_1 + D_2$

- Let's say we now find out that \mathbf{x}_1 is exactly ... \mathbf{x}_1 (lazy notation :)). We can

Gaussian Processes

A Gaussian Process (GP)

- Consider modelling some unknown function that maps $\mathbf{x} \in \mathbb{R}^{D}$ to \mathbb{R}
- In Week 5, we used models of the form $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$
- A Gaussian process model $f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ is a bit more complicated:
 - 1. For any set of *M* inputs $\mathbf{X} = [\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(M)}]^{\top}$ the function values $\mathbf{f} = [f(\mathbf{x}^{(1)}), f(\mathbf{x}^{(2)}), \dots, f(\mathbf{x}^{(M)})]^{\top}$ are <u>random variables</u>
 - 2. These random variables have a multivariate Gaussian distribution $\mathbf{f} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

17

GPs are defined by their mean and kernel functions

• $\mathbf{f} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

• $\boldsymbol{\mu} = [m(\mathbf{x}^{(1)}), m(\mathbf{x}^{(2)}), \dots, m(\mathbf{x}^{(M)})]^{\mathsf{T}}$ where *m* is a user-supplied mean function

•
$$\Sigma_{i,j} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$
 where k is a user

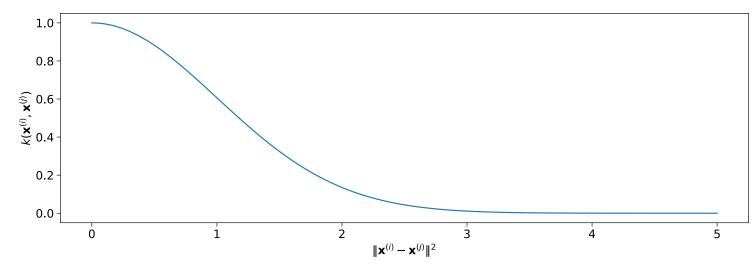
$$\begin{bmatrix} f(\mathbf{x}^{(1)}) \\ f(\mathbf{x}^{(2)}) \\ \vdots \\ f(\mathbf{x}^{(M)}) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(\mathbf{x}^{(1)}) \\ m(\mathbf{x}^{(2)}) \\ \vdots \\ m(\mathbf{x}^{(M)}) \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}^{(1)}, \mathbf{x}^{(1)}) & k(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) & \dots & k(\mathbf{x}^{(1)}, \mathbf{x}^{(M)}) \\ k(\mathbf{x}^{(2)}, \mathbf{x}^{(1)}) & k(\mathbf{x}^{(2)}, \mathbf{x}^{(2)}) & \dots & k(\mathbf{x}^{(2)}, \mathbf{x}^{(M)}) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}^{(M)}, \mathbf{x}^{(1)}) & k(\mathbf{x}^{(M)}, \mathbf{x}^{(2)}) & \dots & k(\mathbf{x}^{(M)}, \mathbf{x}^{(M)}) \end{bmatrix} \right)$$

-supplied kernel function

18

GP prior

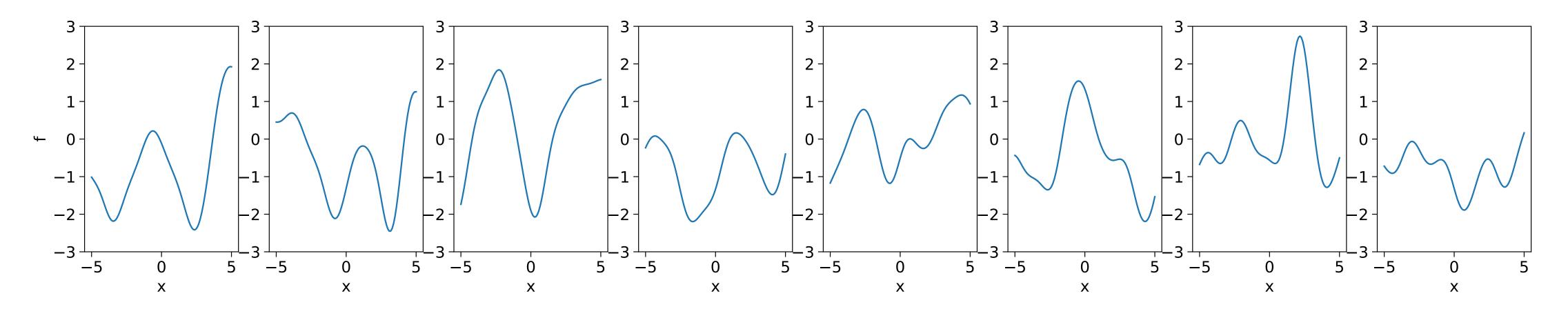
- Our choice of mean and kernel function represent our a priori **assumptions** about what the function $f(\mathbf{x})$ should look like before we see any data
- Without any additional information it's reasonable to use $m(\mathbf{x}) = 0$
- The kernel $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ gives the covariance between $f(\mathbf{x}^{(i)})$ and $f(\mathbf{x}^{(j)})$
- It is reasonable to assume that the function values of points close together will be correlated and those of points further away will be less correlated
- We can embed this assumption usir



ng e.g.
$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2}{2}\right)$$

Sampling from the GP prior (1D case)

- Consider modelling a $\mathbb{R} \to \mathbb{R}$ mapping using $f(x) \sim GP(m(x), k(x, x'))$
- m(x) = 0 (so $\mu = [0 \ 0 \ ...]^{\top} = 0$) and and
- $\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ for any **X**. This is our GP prior
- possible functions from our GP prior

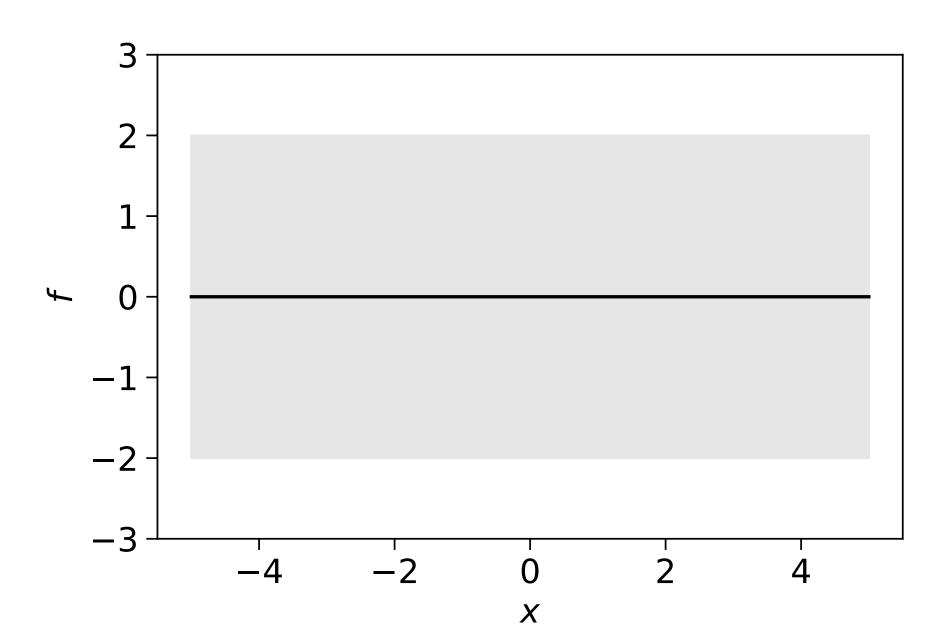


$$\Sigma_{i,j} = k(x^{(i)}, x^{(j)}) = \exp\left(-\frac{(x^{(i)} - x^{(j)})^2}{2}\right)$$

• Let's use $\mathbf{X} = [-5, -4.9, -4.8, ..., +4.8, +4.9, +5]^{+}$ and sample **f** vectors from $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ to get

A distribution for each function value

- We can marginalise $\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ to see what the distribution of function values is for each input *x*. It is $f(x) \sim \mathcal{N}(0, 1) \quad \forall x$ for our prior
- We can plot the mean μ , and shade $\mu \pm 2\sigma$ (the 95% confidence interval) of f(x) for each x but this isn't very exciting!



Conditioning a GP

- Consider some X and the distribution over function values at these points $p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}, \mathbf{X}})$
- Consider some other points \mathbf{X}_* and the theorem of the term of term of
- By the definition of a GP we can write
- $p(\mathbf{f}_* | \mathbf{f}, \mathbf{X}, \mathbf{X}_*) = \mathcal{N}(\mathbf{f}_*; \boldsymbol{\mu}_{\mathbf{X}_* | \mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}_* | \mathbf{X}})$ where $\boldsymbol{\mu}_{\mathbf{X}_* | \mathbf{X}} = \boldsymbol{\mu}_{\mathbf{X}_*} + \boldsymbol{\Sigma}_{\mathbf{X}_*, \mathbf{X}} \boldsymbol{\Sigma}_{\mathbf{X}_*, \mathbf{X}}^{-1} (\mathbf{f} \boldsymbol{\mu}_{\mathbf{X}})$

ne distribution
$$p(\mathbf{f}_* | \mathbf{X}_*) = \mathcal{N}(\mathbf{f}_*; \boldsymbol{\mu}_{\mathbf{X}_*}, \boldsymbol{\Sigma}_{\mathbf{X}_*, \mathbf{X}_*})$$

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} \boldsymbol{\mu}_X \\ \boldsymbol{\mu}_{X_*} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{X,X} & \boldsymbol{\Sigma}_{X,X_*} \\ \boldsymbol{\Sigma}_{X_*,X} & \boldsymbol{\Sigma}_{X_*,X_*} \end{bmatrix})$$

• Let's say we now find out the exact values of **f**. We can condition \mathbf{f}_* on these.

$$\boldsymbol{\Sigma}_{\mathbf{X}_*|\mathbf{X}} = \boldsymbol{\Sigma}_{\mathbf{X}_*,\mathbf{X}_*} - \boldsymbol{\Sigma}_{\mathbf{X}_*,\mathbf{X}} \boldsymbol{\Sigma}_{\mathbf{X},\mathbf{X}}^{-1} \boldsymbol{\Sigma}_{\mathbf{X},\mathbf{X}_*}$$

GPs in the context of ML

• We have
$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} \boldsymbol{\mu}_X \\ \boldsymbol{\mu}_{X_*} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{X},\mathbf{X}} & \boldsymbol{\Sigma}_{\mathbf{X},X_*} \\ \boldsymbol{\Sigma}_{\mathbf{X}_*,\mathbf{X}} & \boldsymbol{\Sigma}_{\mathbf{X}_*,\mathbf{X}_*} \end{bmatrix}) \& p(\mathbf{f}_* | \mathbf{f}, \mathbf{X}, \mathbf{X}_*) = \mathcal{N}(\mathbf{f}_*; \boldsymbol{\mu}_{\mathbf{X}_* | \mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}_* | \mathbf{X}})$$

- where $\mathbf{x} \in \mathbb{R}^D$ and $y \in \mathbb{R}$
- Let **X** be our training points $\mathbf{X} = \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{y}^{(2)} & \dots & \mathbf{y}^{(N)} \end{bmatrix}^{\mathsf{T}}$
- looking at $p(\mathbf{f}_* | \mathbf{f}, \mathbf{X}, \mathbf{X}_*)$. This is our GP posterior

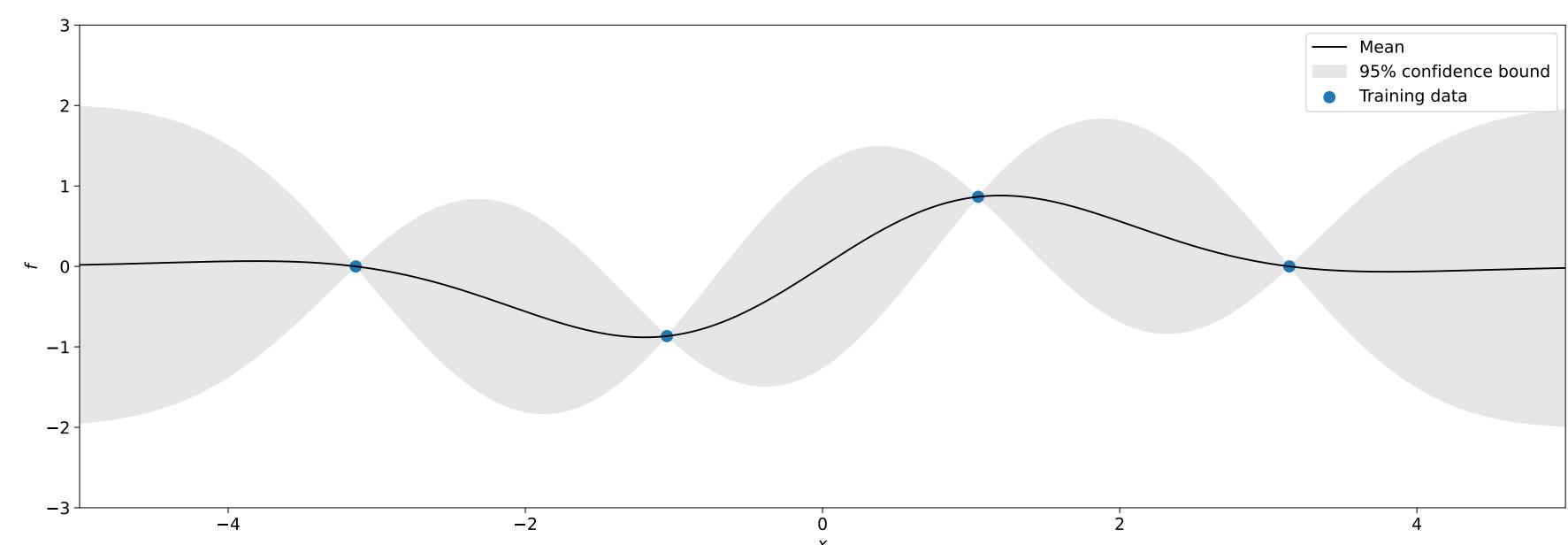
• Now suppose we are doing regression and have training data $\mathfrak{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$

$$\mathbf{x}^{(2)}$$
 ... $\mathbf{x}^{(N)}$ and \mathbf{f} be our targets

• We can make function predictions at new points \mathbf{X}_* in light of our training data by

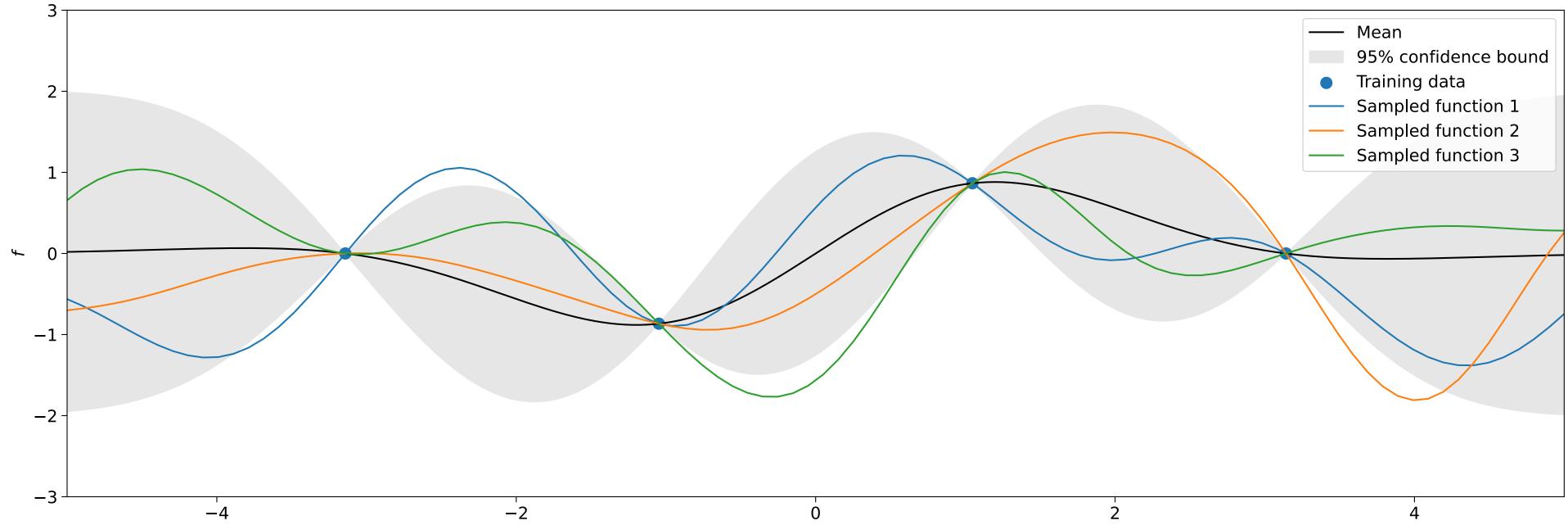
GP regression

- Marginalising $p(\mathbf{f}_* | \mathbf{f}, \mathbf{X}, \mathbf{X}_*)$ for some function value gives a Gaussian distribution
- The mean of that distribution can be used as a prediction for regression
- The variance quantifies how much uncertainty there is in that prediction



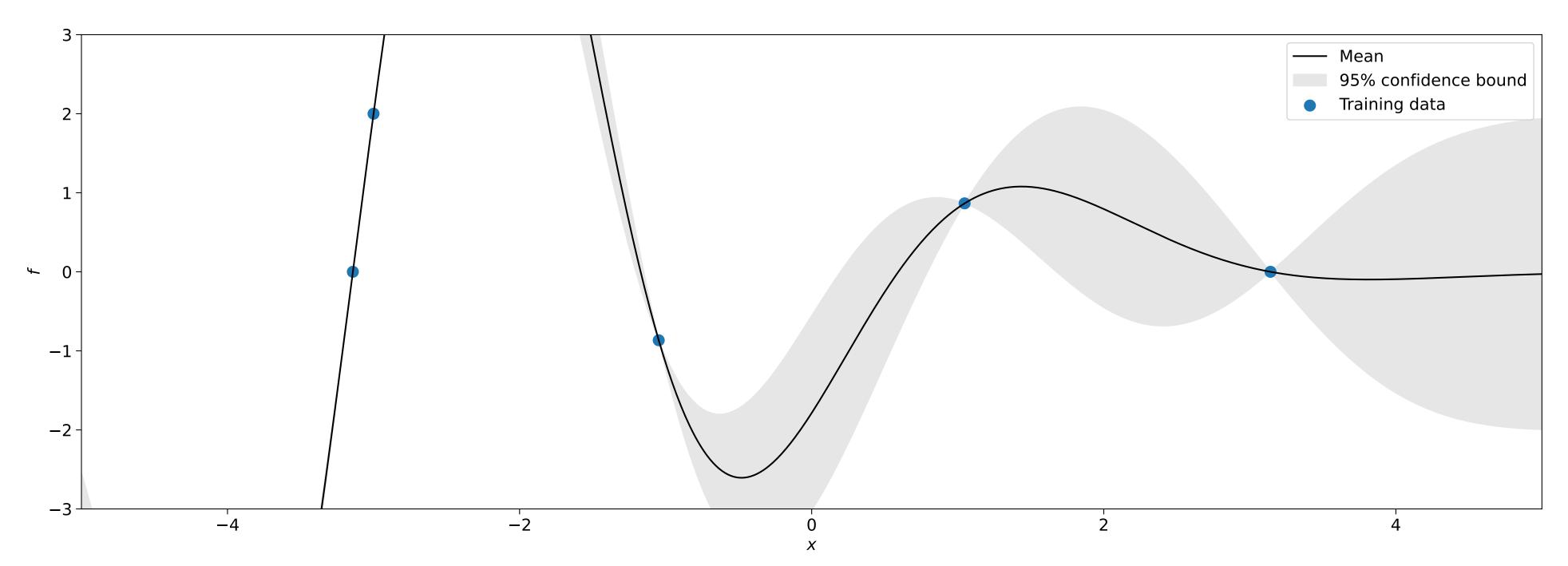
Sampling from the posterior

- p(f_{*} | f, X, X_{*}) is just a multivariate Gaussian we can sample from to get possible functions
- Notice that all functions we sample interpolate the training points



Noisy measurements?

- targets might be noisy :'(



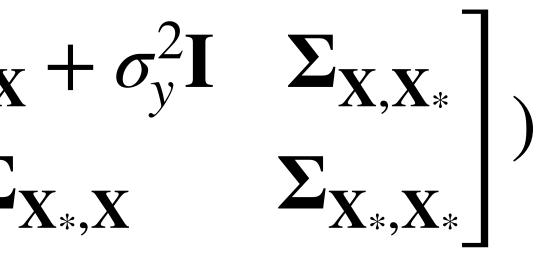
Notice that the mean curve perfectly interpolates the training data (here, and on the previous slide), and that there is zero uncertainty when this happens

• This is a strong requirement, and we might need to accept that our training

Dealing with noisy measurements

- We can (waves hands) assume that our targets $\mathbf{y} = \begin{bmatrix} y^{(1)} & y^{(2)} & \dots & y^{(N)} \end{bmatrix}^T$ suffer from additive Gaussian noise i.e. $y = f(\mathbf{x}) + \mathcal{N}(0, \sigma_v^2)$
- For a GP with mean function zero, we have $\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{X}, \mathbf{X}})$. It follows that $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{X},\mathbf{X}} + \sigma_v^2 \mathbf{I})$

- This gives us
$$\begin{bmatrix} y \\ f_* \end{bmatrix} \sim \mathcal{N}(0, \begin{bmatrix} \Sigma_{X,X} \\ \Sigma_{X} \end{bmatrix}$$



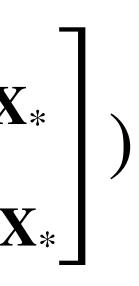
From hereon we assume $m(\mathbf{x}) = 0$. This is quite a common assumption. See https://stats.stackexchange.com/questions/ 63251/what-justifies-the-zero-mean-assumption-for-gaussianprocesses for some thoughts on the matter.

Conditioning a GP subject to noisy measurements

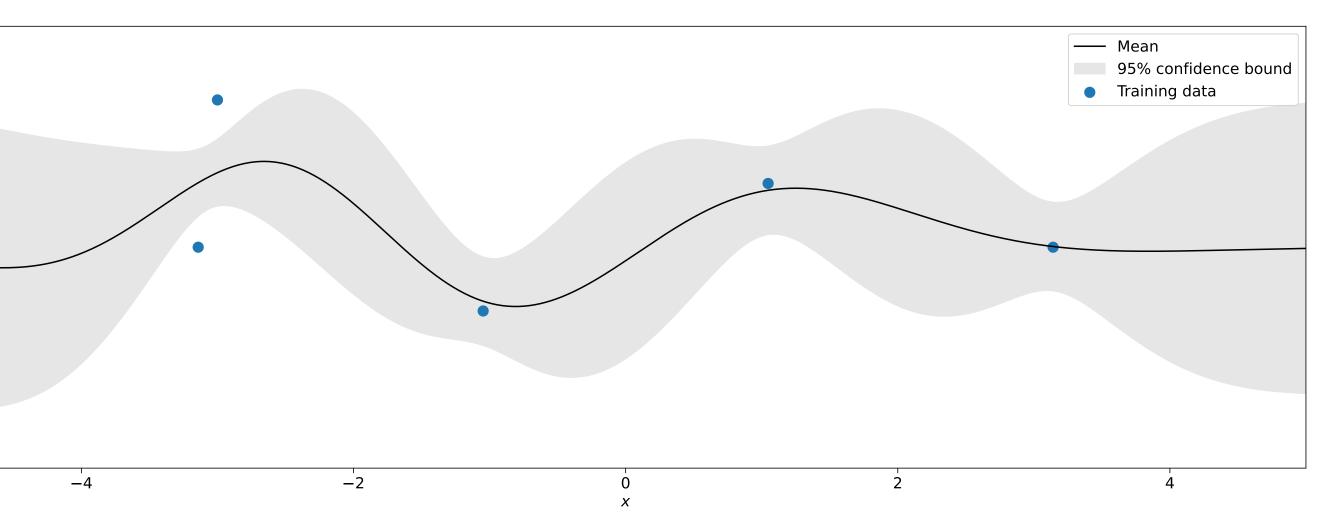
•
$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{X},\mathbf{X}} + \sigma_y^2 \mathbf{I} & \mathbf{\Sigma}_{\mathbf{X},\mathbf{X}} \\ \mathbf{\Sigma}_{\mathbf{X}_*,\mathbf{X}} & \mathbf{\Sigma}_{\mathbf{X}_*,\mathbf{X}} \end{bmatrix}$$

measurements

$$p(\mathbf{f}_* | \mathbf{y}, \mathbf{X}, \mathbf{X}_*) = \mathcal{N}(\mathbf{f}_*; \boldsymbol{\mu}_{\mathbf{X}_* | \mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}_* | \mathbf{X}})^{\frac{3}{2}}$$
$$\mu_{\mathbf{X}_* | \mathbf{X}} = \boldsymbol{\Sigma}_{\mathbf{X}_*, \mathbf{X}} (\boldsymbol{\Sigma}_{\mathbf{X}, \mathbf{X}} + \sigma_y \mathbf{I})^{-1} \mathbf{y}$$
$$\boldsymbol{\Sigma}_{\mathbf{X}_* | \mathbf{X}} = \boldsymbol{\Sigma}_{\mathbf{X}_*, \mathbf{X}_*} - \boldsymbol{\Sigma}_{\mathbf{X}_*, \mathbf{X}} (\boldsymbol{\Sigma}_{\mathbf{X}, \mathbf{X}} + \sigma_y \mathbf{I})^{-1} \boldsymbol{\Sigma}_{\mathbf{X}, \mathbf{X}_*}$$



• We can use the conditioning formula to get a GP posterior subject to noisy



Kernels

We have used
$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{1}{2}\right)$$

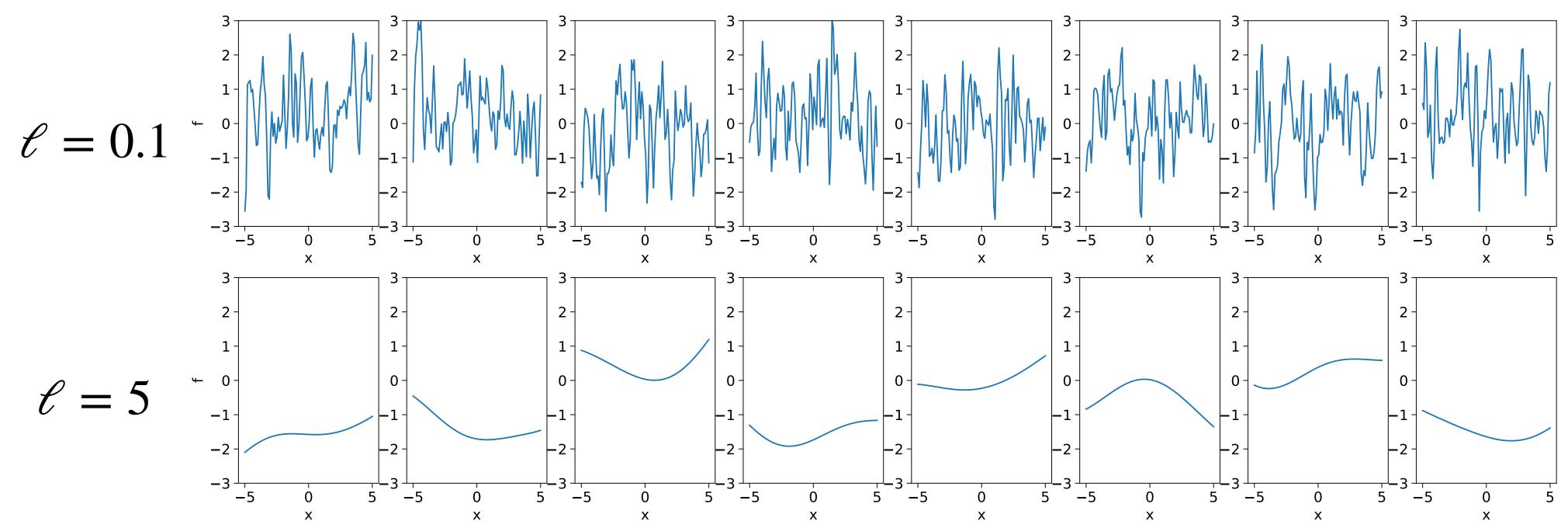
- This is a simplified version of the RBF or squared exponential kernel $k_{SE}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2}{2\ell^2}\right)$
- Notice that it has a hyperparameter ℓ
- The output of the kernel must always be ≥ 0

$$\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2}{2}$$

The length scale of the RBF kernel

•
$$k_{SE}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|}{2\ell^2}\right)$$

from the GP are



 $||^2$

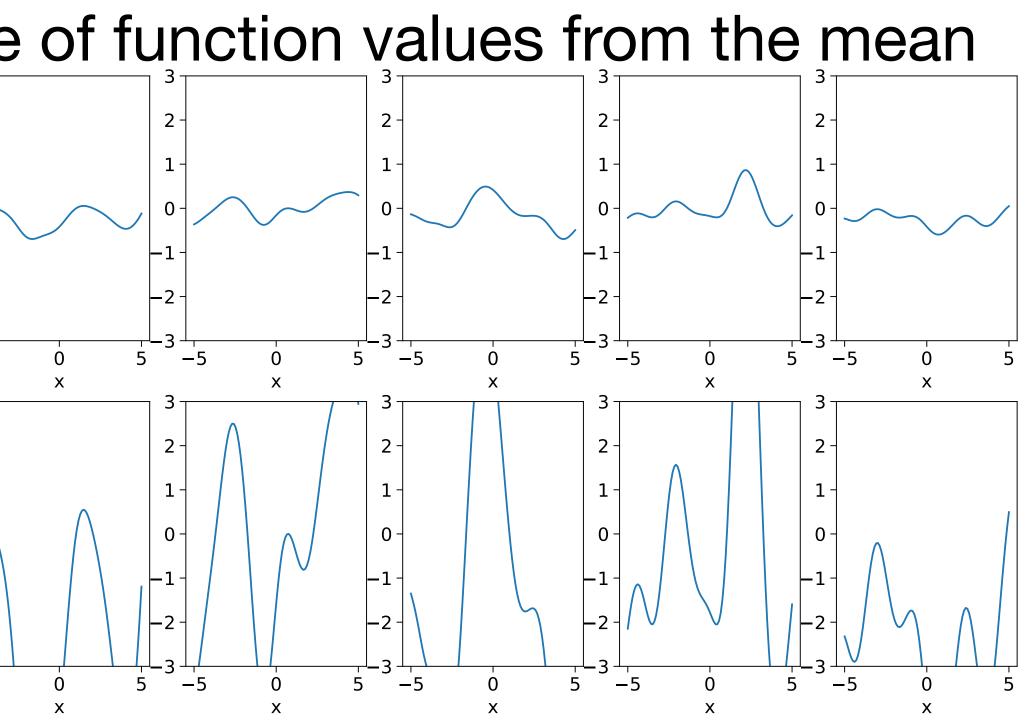
• ℓ is known as the lengthscale and determines how wiggly functions drawn

Scaling the RBF kernel

•
$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sigma^2 \exp\left(-\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2}{2\ell^2}\right)$$

• σ^2 determines the average distance of function values from the mean $\sigma^2 = 0.1$ -3 0 $\sigma^2 = 10^{5} e^{-1}$ 0 -0 -0 --1--2--3⊥--5 5 -5 5 -5 5 -5 0 0 0 Х

• It is common to multiple kernels by a hyperparameter σ^2 (the output variance)



31

Kernels are important

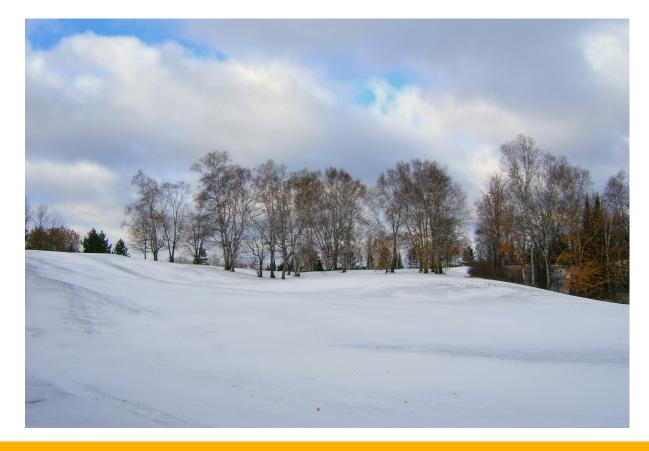
- behaviour of a GP
- It is us providing our assumptions about the problem!

Predicting house price from location:

Prices will correlate for houses that are near to each other.

RBF kernel makes sense

• The choice of kernel is the most important factor for determining the



Predicting the temperature given the date:

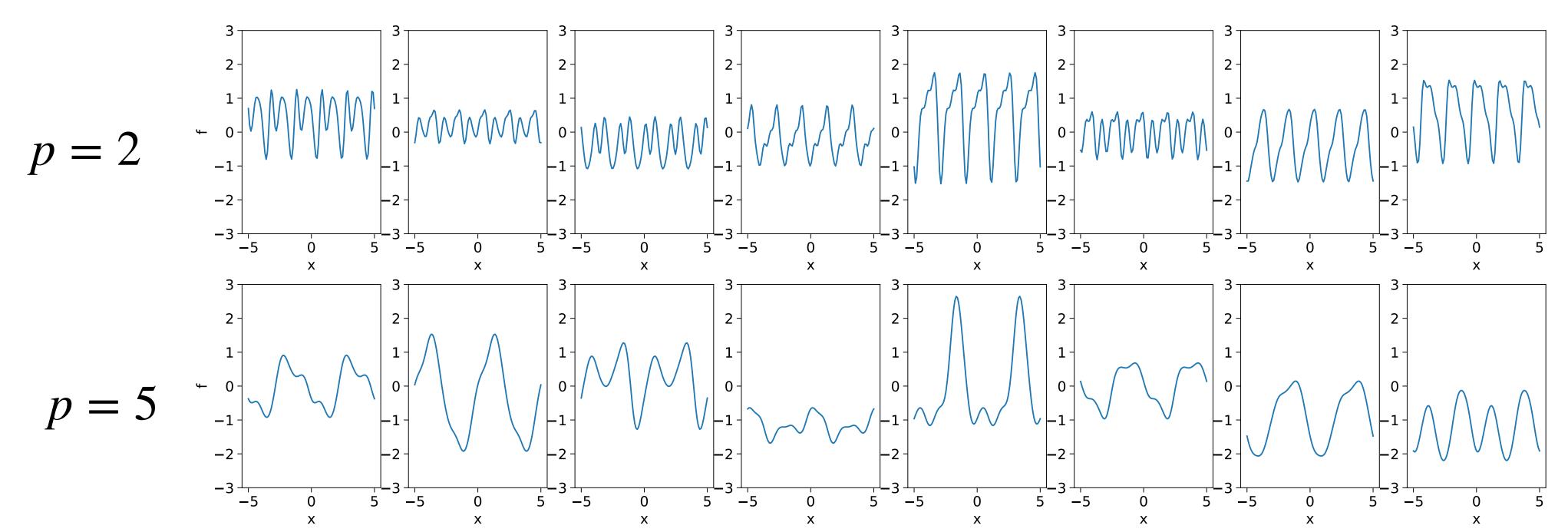
There is seasonality. December one year correlates to December the next even though they are far away!

We need a periodic kernel

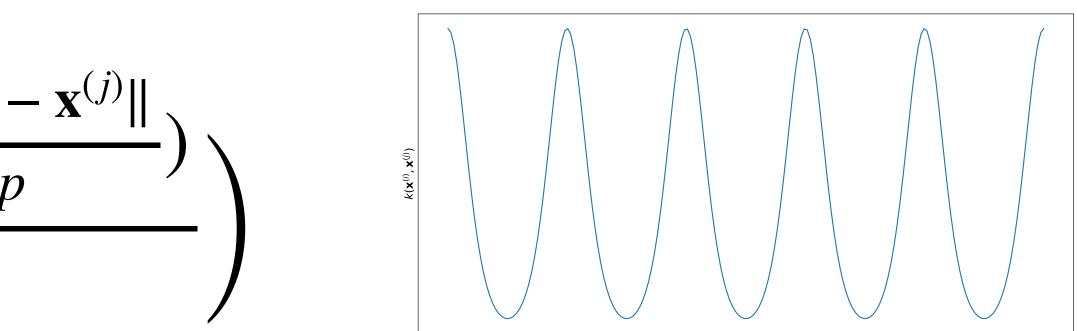
The period kernel (E)

$$k_P(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{2\sin^2(\frac{\pi \|\mathbf{x}^{(i)}\|}{\ell^2})}{\ell^2}\right)$$

• ℓ behave the same as for the RBF kernel. p is the periodicity



xp-Sine-Squared)



 $\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2$

There are lots of others kernels!

- See <u>https://www.cs.toronto.edu/~duvenaud/cookbook/</u> for all the kernels you could ever care to know about
- In the above, all kernels have a scaling factor
- Sklearn kernels don't by default, just be aware of this!

Hyperparameters again!

- Kernels have hyperparameters
- We could do a grid search to find the best hyperparameters to minimise e.g. MSE on a validation set, but this would be slow. Is there a faster way? (Yes)
- Let's find the hyperparameters that maximise the likelihood of our targets, given our data: $p(\mathbf{y} \,|\, \mathbf{X})$
- With noisy measurements we have defined $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{X}, \mathbf{X}} + \sigma_y^2 \mathbf{I})$
- In the expression above, the dependence on X was implicit. Let's write the whole thing explicitly: $p(\mathbf{y} | \mathbf{X}) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{\Sigma}_{\mathbf{X}, \mathbf{X}} + \sigma_y^2 \mathbf{I})$

Optimisation

- We have $p(\mathbf{y} \mid \mathbf{X}) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{\Sigma}_{\mathbf{X}, \mathbf{X}})$
- Collecting our hyperparameters into a vector θ , we want to solve maximise $p(\mathbf{y} | \mathbf{X})$ θ
- This is equivalent to solving minimise $-\log p(\mathbf{y} | \mathbf{X})$ θ
- This can be achieved using a gradient-based optimiser for differentiable kernels

$$\log p(\mathbf{y} \mid \mathbf{X}) = -\frac{1}{2} \mathbf{y}^{\mathsf{T}} (\mathbf{\Sigma}_{\mathbf{X}, \mathbf{X}} + \sigma_y^2 \mathbf{I})^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{\Sigma}_{\mathbf{X}, \mathbf{X}} + \sigma_y^2 \mathbf{I}| - \frac{N}{2} \log 2\pi$$

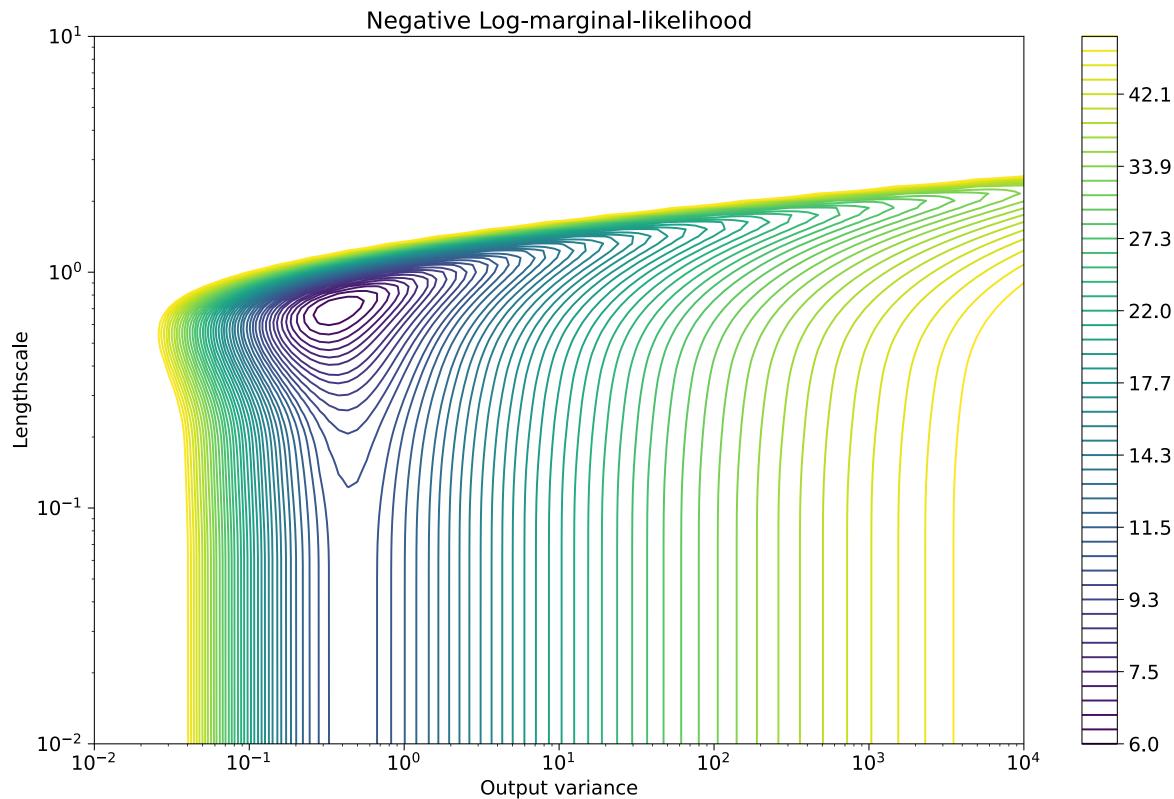
+
$$\sigma_y^2 \mathbf{I}$$
)

This quantity is known as the log marginal likelihood because we've integrated out over **f**

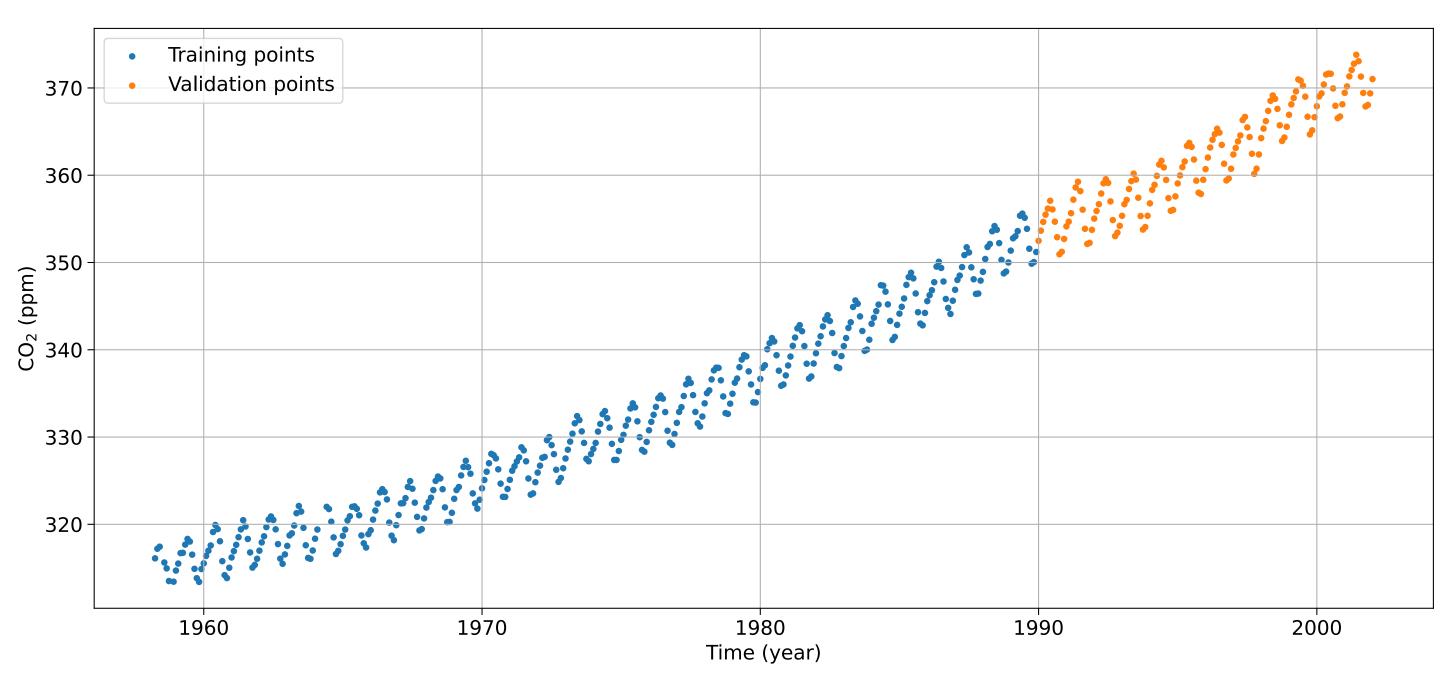
Minimising the negative log-marginal-likelihood

- There may be local minima...
- We can run it multiple times from different initial positions
- Minimising this objective is fast but not necessarily best

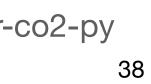
• When you fit a GP to data in sklearn, an optimiser is used to find the kernel hyperparameters that minimise the negative log-marginal-likelihood on train



- Kernels can be combined to form new kernels
- We'll look at a famous GP example: Predicting monthly CO₂ concentrations (in ppm) from the Mauna Loa Observatory in Hawaii



https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html#sphx-glr-auto-examples-gaussian-process-plot-gpr-co2-py



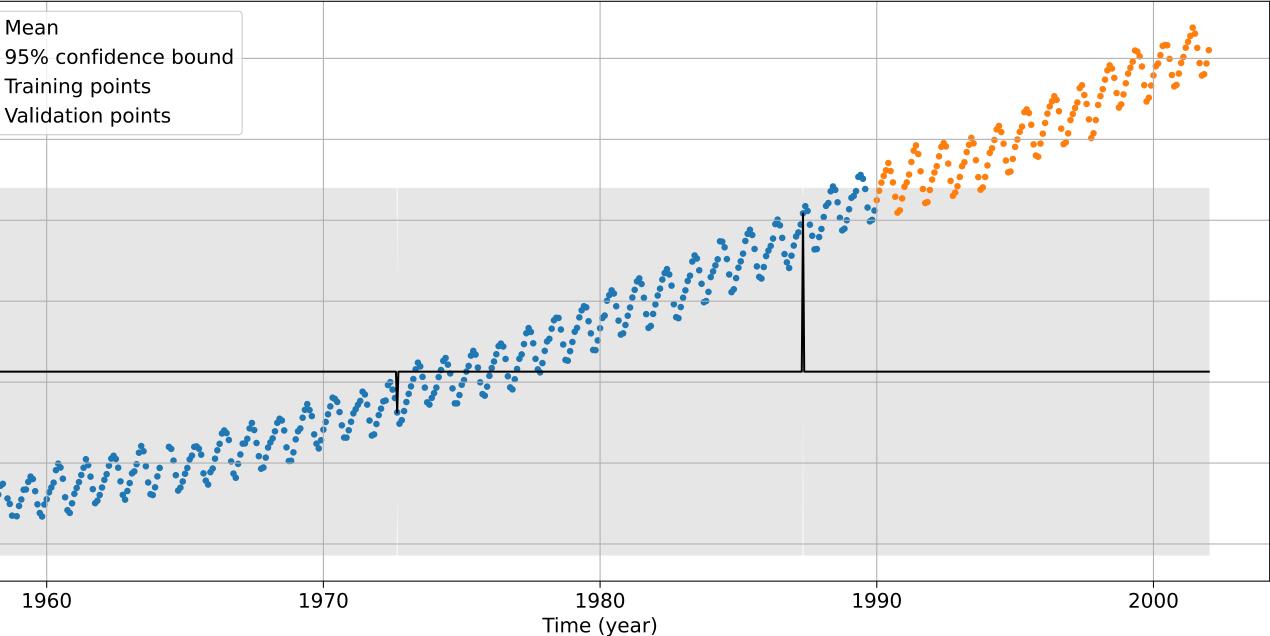
- First, we'll make our data zero mean (but show the true value in the plot)
- Let's naively assume there is minima
- Points close to each other are correlated so let's use an RBF kernel

$$k = \sigma^{2} k_{RBF}(\ell)$$

$$\sigma = 0.9999$$

$$\ell = 10^{-5}$$
I think it broke.

al measurement noise (
$$\sigma_v = 10^{-3}$$
)



$$k = \sigma^2 k_{RBF}(\ell) + k_{noise}(\sigma_n)$$

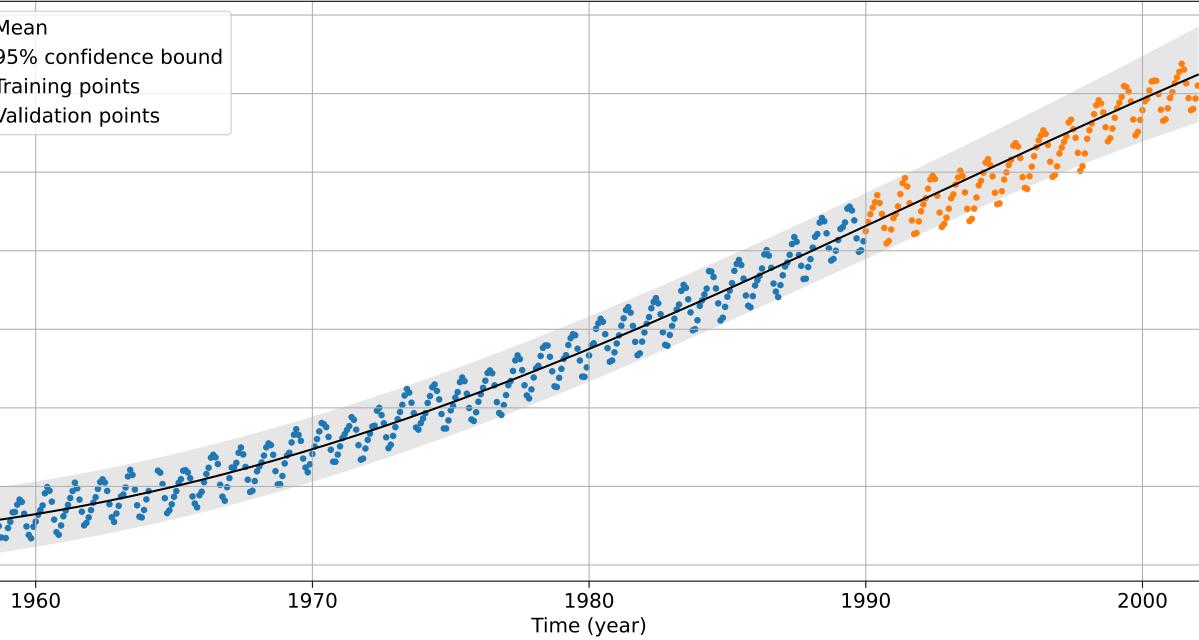
$$\sigma = 3.92$$

$$\ell = 46$$

$$\sigma_n = 0.0319$$

Better. But it doesn't wiggle.

• There is going to be measurement noise, but instead of guessing we can add a white noise kernel $k_{noise}(x, x') = \sigma_n^2 \mathbb{I}(x = x')$ and fit σ_n as a hyperparameter



- Our model can deal with the rising trend but not the seasonal variation
- we know that this is the frequency!
- I also fixed the noise to stop it overfitting (GPs are fairly hacky)

$$k = \sigma_{RBF}^{2} k_{RBF}(\ell_{RBF}) + k_{noise}(\sigma_{n} = 3.92) + \sigma_{P}^{2} k_{P}(\ell_{P} = 1)$$

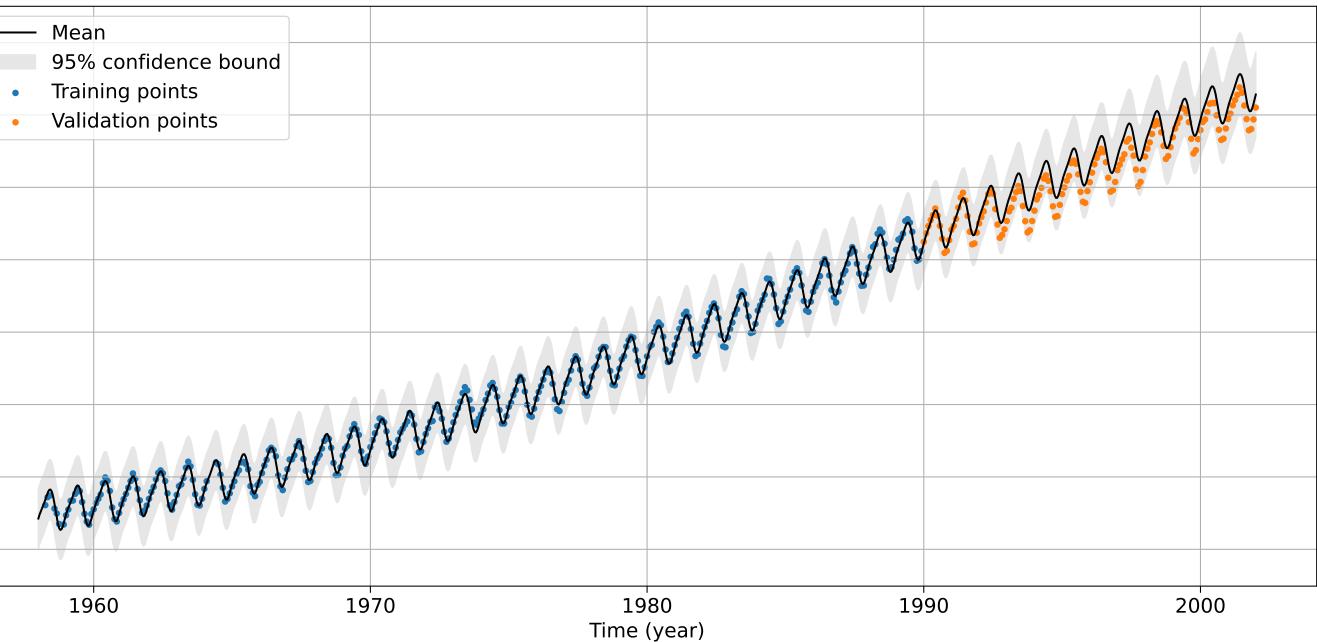
$$\sigma_{RBF} = 4.6$$

$$\ell_{RBF} = 50.5$$

$$\sigma_{P} = 0.485$$
That'll do

310

Let's add a periodic kernel and keep the length scale fixed as 1 year because



The pros and cons of Gaussian processes

- Pro: They give you confidence intervals
- Pro: They work well in the low-data setting
- **Pro:** Providing a kernel can be more intuitive for baking in assumptions about a problem that specifying a functional form from inputs to outputs
- **Con:** Fitting a GP involves inverting a matrix. This is $O(n^3)$ so is very expensive when there is lots of data
- Con: They assume Gaussian noise on the measurements, which might not be true
- Con: Finding the right kernel can be tricky

Summary

- You have revised random variables and Gaussian pdfs
- You have learnt that Gaussian processes (GPs) model function values as random variables that have a Multivariate Gaussian distribution
- You have seen how this distribution is defined in terms of a mean function (which is usually zero) and a kernel function
- You have learnt how to condition a GP on training data for prediction
- You have seen that kernels have hyperparameters which affect their behaviour
- You have seen that these can be optimised by maximising the marginal likelihood

