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Data Analysis and Machine 
Learning 4
Week 10: Convolutional neural networks



• We learnt about deep neural networks (DNNs) as models that incorporate 
feature learning into a given task


• We examined MLPs and how to learn their weights using the gradients 
obtained through backpropagation
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Convolutional Neural Networks 
(ConvNets)



Images

• So far we have represented all our data points as vectors  


• This makes sense with tabular data. Each dimension has a distinct meaning


• Does it make sense to vectorise images?
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Location, location, location

• Objects can be in different places and at different scales across images


• If you vectorise then you are rarely comparing like-for-like at each dimension



Structure

• Objects have a spatial structure. The position of relative parts is important


• We lose this information if we vectorise



Locality

• In an image, pixels near each other tend to relate to the same object


• We lose any sense of locality when we vectorise images

We count “person” as an object. This isn’t meant to be derogatory! 



Spatial information is important

• Let’s keep the image in its original form! This is a cube(/oid) with dimensions 
 where  is the number of colour channels (almost always 3)


• We can represent this mathematically using a 3D tensor 


• In Python this is just a 3D array
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PyTorch notation



• We want to use a DNN  on images


• The fully-connected layers that make up an MLP work on vectors


• We need a new functional layer that works for 3D tensors

f(x) = f (ℒ−1) ∘ f (ℒ−2) ∘ … ∘ f (1) ∘ f (0)(x)

We can’t use an MLP any more :(

f (0) f (1)x h(1) h(2)
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h(l) = f (l)(h(l−1)) = g(W(l)h(l−1) + b(l))

f (0) f (1)x h(1) h(2) h(l) = f (l)(h(l−1)) = g(?)



Convolutions

• We don’t just want a functional layer that works


• We want something that is computationally efficient and suitable given all the 
things we know about images


• 2D convolutions fit this brief and are used heavily in image processing 


• These populate most layers in Convolutional neural networks (ConvNets)




2D Convolution with a single filter 

• The 2D convolutions in ConvNets consist of multiple filters


• Let’s see how 2D convolution with a single filter works


• We will consider a 2D input (e.g. a grayscale image) for now


• For these, a filter is a  matrix where  is the kernel sizek × k k
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2D Convolution with a single filter 

• We place the filter over the input and slide it around to every possible position


• At each position, we take the dot product between the filter and the 
overlapping input elements 


• This result is stored in the corresponding position of the output matrix 
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2D Convolution with a single filter

• There are four possible places this filter can go


• These correspond to the four elements of the output matrix


• We take the dot product at each position and store it in the output
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2D Convolution with multiple filters

• One filter gave us one output matrix 


• Two filters gives us two output matrices that we stack to form a tensor


• And so on… 
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What happens if the inputs are 3D?

• We can still perform a 2D convolution on a 3D input


• We get one output matrix per filter as before


• The only difference is that the filters are  tensors (cubes)C × k × k
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Cube in a cube

• Picture sliding the filter cube around inside the input cube


• It can’t move along the  axis because the cubes have the same depth


• It can only move left/right and up/down


• At each position, you take a dot product and store it in a matrix

z



Padding

• It is common practice to pad the input with zeros so that the input and output 
have the same height and width after a convolution 


• We will assume that this always happens hereon for ease 
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Convolutional layers

• After all that, we can finally unveil what a convolutional layer looks like!


• In an MLP we had   

• A convolutional layer looks like 


• That’s it!

h(l) = f (l)(h(l−1)) = g(W(l)h(l−1) + b(l))
h(l) = f (l)(h(l−1)) = g(W(l) * h(l−1) + b(l))

⋮
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 Why convolutions?

• They are much more parameter-efficient than the matrices seen MLPs


• e.g. Let’s have a simple 2 layer MLP for classifying my face vs. other faces


• Let’s go with hidden dimension 100. How many parameters does  use?W(0)

x ∈ ℝ3×224×224

[ ]vectorise

x ∈ ℝ150528

 needs to be W(0) 100 × 150528

 That’s 15 million parameters!



 Why convolutions?

• Filters are applied to the whole image, they aren’t tied to a certain region


• This means they can deal with objects moving: they’ll produce a similar   
output response, just at a different location


• They are equivariant to translation



Pooling layers

• There’s one last thing to cover before we can look at a whole ConvNet


• Pooling layers — these reduce the spatial resolution of their input by 
aggregating nearby elements 


• Let’s look at an example on an 2D input of a max pooling layer with k = 2
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Average pooling
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ConvNets 

• ConvNets consist of assorted convolutional and pooling layers, and end with 
one or more fully-connected layers, the last of which is (usually) linear


• Let’s look at a small ConvNet architecture trained to classifying MNIST digits 


• The 10D output gives the logits for each class 0,1,2,3,… 
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The input (left) is 
a  

grayscale image 
28 × 28

The output (right) is a vector of logits for each class


We can classify our input as arg max f(x)
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Conv_0

• This layer takes our (padded) image input and applies 32 filters


• We then add a bias to each output channel and apply a ReLU non-linearity 

h(0) ∈ ℝ32×28×28x ∈ ℝ1×28×28W(0) ∈ ℝ32×1×3×3
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Max pool

• This reduces spatial resolution


• The purpose of this is to build translation invariance into our representations
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Conv_1

• This layer takes our (padded) pooled represented and applies 64 filters


• We then add a bias to each output channel and apply a ReLU non-linearity
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Max pool

• This reduces spatial resolution again… 
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Flattening

• The last layer of a DNN is a linear layer applied to a feature vector 


• We are almost there, but our representation is still a tensor


• We simply vectorise, or flatten our representation into a vector
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Linear classification

• Finally, we apply a linear transform to our feature vectors 





• This gives us a vector that contains the logits for each class

f(x) = W(ℒ−1)ϕ(x) + b(ℒ−1)
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Here the logit for class 0 (21.6) is 
the largest 

It follows that the probability the 
input is this class is also largest so 
it is sensible to classify as class 0



(Lack of) interpretability 

• It’s pretty difficult to interpret what exactly is happening


• We can look at all the different channels of  and  to try and get an idea


• These models are still very hard to interpret 
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GPUs

• Convolutions can be naively implemented in a loop, however loops are slow


• Convolutions are implemented by turning both the input and filters into two 
big matrices and multiplying them


• Graphics processing units (GPUs) can do matrix-multiplies very fast


• They are essential for training all but the smallest DNNs



Why bother?

• A benchmark in computer vision is classification performance on ImageNet


• It is a 1000-way classification task with 1 million training images 


• For the 2012 ImageNet challenge:


The 2nd place model used handcrafted features and got 26.2% top 5-error


The 1st place model used a deep ConvNet and got 15.3% top 5-error (& 
36.7% top 1-error)

https://arxiv.org/pdf/1409.0575.pdf



AlexNet (2012)

• The winning entry. It’s split into two streams for 2 GPUs because of memory 
constraints (that no longer exist :) )


• 5 convolutional layers, 3 max pools (interspersed), and 3 FC layers 

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf



Deeper and deeper on ImageNet

• 2014: A 16 layer (13 conv + 3 FC) VGG net can achieve 8.4% top-5 error


• 2015: ResNets use skip connections to go very deep. A 152 layer ResNet 
gets a top-5 error of 4.49%

https://arxiv.org/pdf/1512.03385.pdf



https://paperswithcode.com/sota/image-classification-on-imagenet

ImageNet top-1 accuracies



Vision transformers

• ConvNets are no longer state-of-the art in computer vision


• But they are still widespread so learning about them wasn’t a waste :)

https://arxiv.org/pdf/2010.11929v2.pdf



Why not use deep learning for everything?

• Deep learning beats other ML approaches for learning on images, text, and 
audio data


• DNNs are surpassed by decision tree-based models on tabular data


• DNN are near-impossible to interpret, so when this is required a linear model 
is preferable


• DNNs need lots of data to train from scratch which we may not have!


• We can however use their features for related tasks

https://arxiv.org/pdf/2207.08815.pdf



Summary

• We have looked at properties of images to justify the need to retain spatial 
information


• We have seen how 2D convolutions work, and how to performing pooling


• We have looked at a simple ConvNet architecture in detail


• We have had a brief history lesson in the evolution of ConvNets 


• We have considered when it is appropriate to use deep learning



The end (of the lectures)

• You have visualised and analysed data


• You have considered the ethical implications of deploying ML in society


• You have learnt about linear models for classification and regression


• You have learnt about non-parametric and non-linear models


• You have written code to use these models

I hope you enjoyed it!


