[J
Data Analysis
& Machine Learning

Data Analysis and Machine
Learning 4

Week 10: Convolutional neural networks

@ THE UNIVERSITY

Elliot J. Crowley, 27th March 2023
- of EDINBURGH

Recap

 We learnt about deep neural networks (DNNs) as models that incorporate
feature learning into a given task

0) (1) 1. (£L-3) (£-2

X — (0) L (1) h h b A(Z-2) h_>
0 f f

PH(X)

 We examined MLPs and how to learn their weights using the gradients
obtained through backpropagation

h(Z-D

— J(x)

Convolutional Neural Networks
(ConvNets)

Images

D

e So far we have represented all our data points as vectors X € |
* This makes sense with tabular data. Each dimension has a distinct meaning

* Does it make sense to vectorise images?

T

Location, location, location

* Objects can be in different places and at different scales across images

* |f you vectorise then you are rarely comparing like-for-like at each dimension

Structure

 Objects have a spatial structure. The position of relative parts is important

e We lose this information if we vectorise

Locality

* |n an image, pixels near each other tend to relate to the same object

 We lose any sense of locality when we vectorise images

We count “person” as an object. This isn’t meant to be derogatory!

Spatial information is important

» Let’s keep the image in its original form! This is a cube(/oid) with dimensions
H X W X C where C is the number of colour channels (almost always 3)

« \We can represent this mathematically using a 3D tensor X € | CXHXW
Coe Having channels first is
* |n Python this is just a 3D array PyTorch notation

We can’t use an MLP any more :(

. We want to use a DNN f(x) = fZ Do fAX=2) 6 o fD o fO(X) on images
* The fully-connected layers that make up an MLP work on vectors

 We need a new functional layer that works for 3D tensors

X — f(O) . h(l) N f(l) . h(z) > h(l) :f(l)(h(l—l)) — g(W(Z)h(l—l) + b(l))

Convolutions

 We don’t just want a functional layer that works

 We want something that is computationally efficient and suitable given all the
things we know about images

* 2D convolutions fit this brief and are used heavily in image processing

 These populate most layers in Convolutional neural networks (ConvNets)

2D Convolution with a single filter

 The 2D convolutions in ConvNets consist of multiple filters
* Let’s see how 2D convolution with a single filter works

* We will consider a 2D input (e.g. a grayscale image) for now

e Forthese, a filter is a k X k matrix where k is the kernel size

2D Convolution with a single filter

 We place the filter over the input and slide it around to every possible position

* At each position, we take the dot product between the filter and the
overlapping input elements

* This result is stored in the corresponding position of the output matrix

R

wa + xb+
yvd + ze

wb + xc+
ye + zf

wd + xe+
vg + zh

we + xf+
yh + zi

2D Convolution with a single filter

* There are four possible places this filter can go
 These correspond to the four elements of the output matrix

* We take the dot product at each position and store it in the output

A

b

C

a

b

C

A

b

C

d

f

d

f

d

f

a b C
d e f
g h l
%% X

wa + xb+
vd + ze

wb + xc+
ye + zf

wd + xe+
vg + zh

we + xf+
yh + zi

2D Convolution with multiple filters

* One filter gave us one output matrix

* [wo filters gives us two output matrices that we stack to form a tensor

e And so on...
W X q b
S [
g h
Uu VY

wa + xb+
yvd + ze

wb + xc+
ye + zf

sa + th+
ud + ve

sb + tc+
ue +vf

wd + xe+
ua _|_th

sd + te+
ug + vh

se + tf+
uh + vi

we + xf+
yh + zi

What happens if the inputs are 3D?

 We can still perform a 2D convolution on a 3D input

* We get one output matrix per filter as before

» The only difference is that the filters are C X k X k tensors (cubes)

1,

|

/c

L

~

2

Cube in a cube

* Picture sliding the filter cube around inside the input cube

e |t can’t move along the 7 axis because the cubes have the same depth
* |t can only move left/right and up/down

* At each position, you take a dot product and store It In a matrix

2l !

'

Padding

* |t Is common practice to pad the input with zeros so that the input and output
have the same height and width after a convolution

 We will assume that this always happens hereon for ease

L
J
Cin
e @[]
Cout
/qn ————
1%% %4
C filters
W E RcoutxcinXka X e _ ClnXHXW y E L COMtXHXW

Convolutional layers

o After all that, we can finally unveil what a convolutional layer looks like!
« Inan MLP we had h") = fOhV'=D) = g(WOR!=D 4 pb)

- A convolutional layer looks like h®) = fO(h(=D) = g(W® * h(=D 4 p?)

e That’s it!

Why convolutions?

 They are much more parameter-efficient than the matrices seen MLPs

* e.g. Let’s have a simple 2 layer MLP for classifying my face vs. other faces

e |et’'s go with hidden dimension 100. How many parameters does WO use?

vectorise

» [] WO needs to be 100 x 150528

x € [R3%224x224 x € [R150528 That’s 15 million parameters!

Why convolutions?

* Filters are applied to the whole image, they aren’t tied to a certain region

* This means they can deal with objects moving: they’ll produce a similar
output response, just at a different location

* [hey are equivariant to translation

Pooling layers

* There’s one last thing to cover before we can look at a whole ConvNet

 Pooling layers — these reduce the spatial resolution of their input by
aggregating nearby elements

 Let’s look at an example on an 2D input of a max pooling layer with k = 2

| 5 3 2 The input has been split into
max pool (k — 2) 2 X 2 blocks
5 3
0 2 1 1 The output matrix contains the
maximum value within each
4 4 6 35 4 35 block

It’s spatial resolution has been
4 4 6 17 halved

Average pooling

1 S 3 2

avg pool (k = 2)
o[2 | 1t [1

I 2 || 1.75

4 1 4 | 6 || 35 4 1 16

= = 6 17

avg pool (k = 4)
5.93

ConvNets

 ConvNets consist of assorted convolutional and pooling layers, and end with
one or more fully-connected layers, the last of which is (usually) linear

* Let’s look at a small ConvNet architecture trained to classifying MNIST digits

 The 10D output gives the logits for each class 0,1,2,3,...

h© hO l h(D hD l d(X)
M | poo M | olele, Li

X —> —_— ., — —) ——> Fatten —— ZF — f(X)
- 21.6
—12.3
5.3
—7.0
The input (left) is The output (right) is a vector of logits for each class :23
a28 X 28 43
grayscale image We can classify our input as arg max f(x) e
04

Conv O

* This layer takes our (padded) image input and applies 32 filters

 We then add a bias to each output channel and apply a ReLU non-linearity

o = faels |t [m] %

15 (] el el [l :

e Ce Ty 28

I LEE L] L W
W(O) = [R32X1X3X3 X € R1x28x28 h(()) 28R32><28><28

hO
e

Max pool

* This reduces spatial resolution

* The purpose of this is to build translation invariance into our representations

: \
28 ’ 14 |

v

i 3"/ 32 D 'K

h(O) = R32x28x28

) h(O)
X Max pool pool

k=72

Conv 1

* This layer takes our (padded) pooled represented and applies 64 filters

 We then add a bias to each output channel and apply a ReLU non-linearity

i z
14 x"' A
v ¢ 32 .
s e 14 i e
- i
WD & [64x32x3x3 hg;)oz c R32x14x14 h(D) & R64x14x14

h©)
pool

h(O)
X —>

Max pool

* This reduces spatial resolution again...

4
4
4
4
L4
4
X4
4
> ¢
4 "
A " P
' R A e
4
1 ’ ;

14 7 64 R
u--m-->’ (1) 64X7XT
h(l) = R64X14X14 hpOOl e R

0 (0)
h©® hpo()l

E——

Flattening

» The last layer of a DNN is a linear layer applied to a feature vector ¢(Xx)

* \We are almost there, but our representation is still a tensor

* We simply vectorise, or flatten our representation into a vector

The way this is done doesn’t
matter as long as it is consistent
between data points

64

A <
Tyl K
7

h(l) = R64X7X7
pool

h©)
pool

P(X)

h(O)
X —>

Linear classification

* Finally, we apply a linear transform to our feature vectors
fx) = WEDh(x) + b

* This gives us a vector that contains the logits for each class

[21.6]
~123

5.3

~7.0
~2.9
~6.9
4.3
~6.6
0.9

04

P(X)

Flatten ————————p

— f(X)

(Lack of) interpretability

» |t’s pretty difficult to interpret what exactly is happening

. We can look at all the different channels of h”> and h'V to try and get an idea

 These models are still very hard to interpret

olofzol ool REEANERE@
' ' EEBEEEZNHE
Illl SEHEEAENENRN
EEEEEEEBS

rasflanriaa
< HEEARNERENERS
7 BB | " DB EEEHGBDMD
- EEENZEHRB

h© ¢ R32x28x28 h(D ¢ @64x14x14

GPUs

 Convolutions can be naively implemented in a loop, however loops are slow

 Convolutions are implemented by turning both the input and filters into two
big matrices and multiplying them

* (Graphics processing units (GPUs) can do matrix-multiplies very fast

* They are essential for training all but the smallest DNNs

Why bother?

A benchmark in computer vision is classification performance on ImageNet
* |tis a 1000-way classification task with 1 million training images
* Forthe 2012 ImageNet challenge:
o The 2nd place model used handcrafted features and got 26.2% top 5-error

O The 1st place model used a deep ConvNet and got 15.3% top 5-error (&
36.7% top 1-error)

https://arxiv.org/pdf/1409.0575.pdf

AlexNet (2012)

* The winning entry. It’s split into two streams for 2 GPUs because of memory
constraints (that no longer exist :))

e 5 convolutional layers, 3 max pools (interspersed), and 3 FC layers

3\{\:\\ 3 -1 3 > I
———————————— 3\\::\:—_____:_\ ’/ 3 [~
3| [
i 55 55 58 2048 2048 \dense
;128 P e
X7 NI 13 \ 13
3 _ AN
--------- 3|} 300 3|
oy 13 [T 3= T |13 dense| [dense
27 3\ [N\
3| .\ 1000
192 192 128 Max
- 2048
Max 128 Max pooling 2048
pooling pooling

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper.pdf

Deeper and deeper on ImageNet

top-5 error

(13 conv + 3 FC) VGG net can achieve 8.4%

A 16 layer

e 2014

to go very deep. A 152 layer ResNet

IoONS

ResNets use skip connect

gets a top-5 error of 4.49%

e 2015

000T 24

A

9601 24

A

9607 3}

A

2/ ‘lood

Z1S ‘AU0D £XE

A

ZTS ‘AU0d EXE

A

ZTS ‘AU0D £XE

A

ZTS ‘AU0D EXE

A

2/ ‘lood
A

ZTS ‘AU0D €XE

A

ZTS ‘AU0D EXE

>

Z1S ‘AU0D £XE

>

ZTS ‘AU0D £XE

>

od

o~
~
» 5

9GZ ‘AU0D £X§

A

9GZ ‘AU0D EX§

N

9GZ ‘AUOD EXE

> -

9GZ ‘AU0D £XE

>

©
s,
Q

z/

>

8ZT ‘AUOD £X§

>

8T ‘AUOD £XE

S

o>

9 ‘Au0d £xg

>

9 ‘AUOD £XE

Q
Qo
(T
E

61-O9OA

000T 24

A

|ood 8ae

4

Z1S ‘AU0D £XE

A

Z1S ‘AU0D E£XE

T :92IS
indino

Z1S ‘AU0d £X§

A

Z1S ‘AU0D £X§

”° Z1S ‘AU0D £XE

A A

9G7 ‘AUOD EXE

A

9G7 ‘AUOD EXE

9G7 ‘AUOD EXE

A

9G7 ‘AUOD £XE

95T ‘AUOD EXE

A

9G7 ‘AUOD EXE

95T ‘AU0D EXE

A

9G7 ‘AUOD £XE

95 ‘AU0D EXE

A

9GZ ‘AU0D £XE

-
-
-®
-

o 9GZ ‘AU EXE

A A
..... Z/ 95T ‘Au0d gXg
priozIs 00 TteellTTT

indino

87T ‘AUOD EXE

A

87T ‘AUOD EXE

87T ‘AUOD EXE

A

87T ‘AUOD EXE

87T ‘AUOD EXE

A
87T ‘AUOD EXE

-
"
.

.’ 8T ‘AUOD £XE

87 :9ZIS). A
indino .. N\ ~wN.n ‘Au0d EXE

9 ‘AUOD EX§

A

9 ‘AUOD EXE

.“
-
LR

9 ‘AUOD EXE

A

9 ‘AUOD €XE

{9 ‘AUOD €XE
A

9 ‘AUOD €XE

9G :9zIS L*

indino zZ/ ‘lood
A

2/ ‘v9 ‘AU0d /X[
A

CTT ?zis
indino

v 9IS
indino

a8ewl

|lenpisaJ JaAe|-¢€

https://arxiv.org/pdf/1512.03385.pdf

ImageNet top-1 accuracies

Leaderboard Dataset
View | Top 1 Accuracy vy by ' Date vy for @ Allmodels v
100 —
Meta Pseudo Labels (EfficientNet-L2)ViT-G/14 CoCa (finetuned)
90 : Notr R7\ U R -
ResNeXt-101 32x4gd | oisystudent (EfficientNet-87)
O PNASNet=5-®— *f
- ResNeXt-101 64x4—@—@
§ 80 Inception V3 ——&—""
O -
Q VGG-19
— MSRA
a /0 . P e
O Five Base + Five"HiRes
- AlexNet /7~
60
50
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Other models -o- State-of-the-art models

https://paperswithcode.com/sota/image-classification-on-imagenet

Vision transformers

 ConvNets are no longer state-of-the art in computer vision

» But they are still widespread so learning about them wasn’t a waste :)

Vision Transformer (ViT) Transformer Encoder

N A 1
Class) | Y (+)
Bird
Ball [MLP
Head
Car [MLP]

Transformer Encoder

i
I
I
I
I
, ~ |
I
|)
I @4—
I :
B - BOO0OOO NG | | [(HE
I
I
- ' |
! |)
I
I

[

* Extra
[clas] embe dd ng [L1near PrOJectlon of Flattened Patches A A A

‘ ‘ ‘ [Norm]
\ _ TH L M
- I l %%« E % i

p——— |

Embedded
Patches

https://arxiv.org/pdf/2010.11929v2.pdf

Why not use deep learning for everything?

 Deep learning beats other ML approaches for learning on images, text, and
audio data

 DNNSs are surpassed by decision tree-based models on tabular data

 DNN are near-impossible to interpret, so when this is required a linear model
IS preferable

 DNNs need lots of data to train from scratch which we may not have!

S 10 Classification (15 datasets) 9 4o Regression (19 datasets)

of best

e \We can however use their features for related tasks

£ 09

y of
) up to this iterat

lid set) up to this iteration

lid set

Normalized R2 test score

Normalized test accuracy of best

model (on va
o

model (on va
o

Number of random search iterations

https://arxiv.org/pdf/2207.08815.pdf

Summary

 We have looked at properties of images to justify the need to retain spatial
information

 We have seen how 2D convolutions work, and how to performing pooling
 We have looked at a simple ConvNet architecture in detall
* We have had a brief history lesson in the evolution of ConvNets

* We have considered when it is appropriate to use deep learning

The end (of the lectures)

* You have visualised and analysed data

* You have considered the ethical implications of deploying ML in society
* You have learnt about linear models for classification and regression

* You have learnt about non-parametric and non-linear models

e You have written code to use these models

| hope you enjoyed it!

"You know;I'm somg’ghmg o)
almachine Ieaming@gpe,rt myself.”

A

