
Elliot J. Crowley, 27th March 2023

Data Analysis and Machine
Learning 4
Week 10: Convolutional neural networks

• We learnt about deep neural networks (DNNs) as models that incorporate
feature learning into a given task

• We examined MLPs and how to learn their weights using the gradients
obtained through backpropagation

Recap

f (0) f (1) f (ℒ−2) f (ℒ−1)x f(x)h(0) h(ℒ−2)h(1) h(ℒ−3)

ϕ(x)
h(ℒ−1)

x0

x1

h(0)
0

h(0)
1

h(0)
2

h(1)
0

h(1)
1

Convolutional Neural Networks
(ConvNets)

Images

• So far we have represented all our data points as vectors

• This makes sense with tabular data. Each dimension has a distinct meaning

• Does it make sense to vectorise images?

x ∈ ℝD

[]⊤

[]
⊤

Location, location, location

• Objects can be in different places and at different scales across images

• If you vectorise then you are rarely comparing like-for-like at each dimension

Structure

• Objects have a spatial structure. The position of relative parts is important

• We lose this information if we vectorise

Locality

• In an image, pixels near each other tend to relate to the same object

• We lose any sense of locality when we vectorise images

We count “person” as an object. This isn’t meant to be derogatory!

Spatial information is important

• Let’s keep the image in its original form! This is a cube(/oid) with dimensions
 where is the number of colour channels (almost always 3)

• We can represent this mathematically using a 3D tensor

• In Python this is just a 3D array

H × W × C C

x ∈ ℝC×H×W

H

W W

H

CC

H

W

Having channels first is
PyTorch notation

• We want to use a DNN on images

• The fully-connected layers that make up an MLP work on vectors

• We need a new functional layer that works for 3D tensors

f(x) = f (ℒ−1) ∘ f (ℒ−2) ∘ … ∘ f (1) ∘ f (0)(x)

We can’t use an MLP any more :(

f (0) f (1)x h(1) h(2)
[… …]⊤ [… …]⊤ [… … …]⊤

h(l) = f (l)(h(l−1)) = g(W(l)h(l−1) + b(l))

f (0) f (1)x h(1) h(2) h(l) = f (l)(h(l−1)) = g(?)

Convolutions

• We don’t just want a functional layer that works

• We want something that is computationally efficient and suitable given all the
things we know about images

• 2D convolutions fit this brief and are used heavily in image processing

• These populate most layers in Convolutional neural networks (ConvNets)

2D Convolution with a single filter

• The 2D convolutions in ConvNets consist of multiple filters

• Let’s see how 2D convolution with a single filter works

• We will consider a 2D input (e.g. a grayscale image) for now

• For these, a filter is a matrix where is the kernel sizek × k k

*[
−1 −1 −1
−1 8 −1
−1 −1 −1] =

2D Convolution with a single filter

• We place the filter over the input and slide it around to every possible position

• At each position, we take the dot product between the filter and the
overlapping input elements

• This result is stored in the corresponding position of the output matrix

* =a b c

fed

g h i

w x

zy

wa + xb+
yd + ze

wb + xc+
ye + z f

we + xf+
yh + zi

wd + xe+
yg + zh

2D Convolution with a single filter

• There are four possible places this filter can go

• These correspond to the four elements of the output matrix

• We take the dot product at each position and store it in the output
a b c

fed

g h i

a b c

fed

g h i

a b c

fed

g h i

a b c

fed

g h i

w x

zy

wa + xb+
yd + ze

wb + xc+
ye + z f

we + xf+
yh + zi

wd + xe+
yg + zh

wa + xb+
yd + ze

wb + xc+
ye + z f

we + xf+
yh + zi

wd + xe+
yg + zh

2D Convolution with multiple filters

• One filter gave us one output matrix

• Two filters gives us two output matrices that we stack to form a tensor

• And so on…

a b c

fed

g h i
* = sa + tb+

ud + ve
sb + tc+
ue + vf

se + tf+
uh + vi

sd + te+
ug + vh

w x

zy
s t

vu

What happens if the inputs are 3D?

• We can still perform a 2D convolution on a 3D input

• We get one output matrix per filter as before

• The only difference is that the filters are tensors (cubes)C × k × k

* =
2

C

C

k

k

Cube in a cube

• Picture sliding the filter cube around inside the input cube

• It can’t move along the axis because the cubes have the same depth

• It can only move left/right and up/down

• At each position, you take a dot product and store it in a matrix

z

Padding

• It is common practice to pad the input with zeros so that the input and output
have the same height and width after a convolution

• We will assume that this always happens hereon for ease

* = H

W

Cout

Conv2D

Cin

W

H

x ∈ ℝCin×H×W
⋮

Cin

 filters Cout

k

W ∈ ℝCout×Cin×k×k y ∈ ℝCout×H×W

Convolutional layers

• After all that, we can finally unveil what a convolutional layer looks like!

• In an MLP we had

• A convolutional layer looks like

• That’s it!

h(l) = f (l)(h(l−1)) = g(W(l)h(l−1) + b(l))
h(l) = f (l)(h(l−1)) = g(W(l) * h(l−1) + b(l))

⋮

* =

 Why convolutions?

• They are much more parameter-efficient than the matrices seen MLPs

• e.g. Let’s have a simple 2 layer MLP for classifying my face vs. other faces

• Let’s go with hidden dimension 100. How many parameters does use?W(0)

x ∈ ℝ3×224×224

[]vectorise

x ∈ ℝ150528

 needs to be W(0) 100 × 150528

 That’s 15 million parameters!

 Why convolutions?

• Filters are applied to the whole image, they aren’t tied to a certain region

• This means they can deal with objects moving: they’ll produce a similar
output response, just at a different location

• They are equivariant to translation

Pooling layers

• There’s one last thing to cover before we can look at a whole ConvNet

• Pooling layers — these reduce the spatial resolution of their input by
aggregating nearby elements

• Let’s look at an example on an 2D input of a max pooling layer with k = 2

0 2 1

644

4 4 6

1

35

17

1 5 3 2
max pool (k = 2)

5

4

3

35

The input has been split into
 blocks

The output matrix contains the
maximum value within each

block

It’s spatial resolution has been
halved

2 × 2

Average pooling

0 2 1

644

4 4 6

1

35

17

1 5 3 2
avg pool (k = 2)

2

4

1.75

16

avg pool (k = 4)
5.93

ConvNets

• ConvNets consist of assorted convolutional and pooling layers, and end with
one or more fully-connected layers, the last of which is (usually) linear

• Let’s look at a small ConvNet architecture trained to classifying MNIST digits

• The 10D output gives the logits for each class 0,1,2,3,…

21.6
−12.3

5.3
−7.0
−2.9
−6.9

4.3
−6.6

0.9
0.4

The input (left) is
a

grayscale image
28 × 28

The output (right) is a vector of logits for each class

We can classify our input as arg max f(x)

x
Conv_0

k = 3
Cin = 1

Cout = 32

Max pool
k = 2

Max pool
k = 2

Conv_1

k = 3

Cin = 32
Cout = 64

Flatten Linear
3136 → 10 f(x)

ϕ(x)h(0) h(0)
pool h(1) h(1)

pool

Conv_0

• This layer takes our (padded) image input and applies 32 filters

• We then add a bias to each output channel and apply a ReLU non-linearity

h(0) ∈ ℝ32×28×28x ∈ ℝ1×28×28W(0) ∈ ℝ32×1×3×3

32
These are the average
activations across all

channels

x
Conv_0

k = 3
Cin = 1

Cout = 32

h(0)

28

28

Max pool

• This reduces spatial resolution

• The purpose of this is to build translation invariance into our representations

x
Conv_0

k = 3
Cin = 1

Cout = 32

Max pool
k = 2

h(0) h(0)
pool

h(0) ∈ ℝ32×28×28

32
28

28 h(0)
pool ∈ ℝ32×14×14

32
14

14

Conv_1

• This layer takes our (padded) pooled represented and applies 64 filters

• We then add a bias to each output channel and apply a ReLU non-linearity

x
Conv_0

k = 3
Cin = 1

Cout = 32

Max pool
k = 2

Conv_1

k = 3

Cin = 32
Cout = 64

h(0) h(0)
pool h(1)

14

14

h(0)
pool ∈ ℝ32×14×14

32

⋮
W(1) ∈ ℝ64×32×3×3

32 These are the average
activations across all

channels

h(1) ∈ ℝ64×14×14

6414

14

Max pool

• This reduces spatial resolution again…

x
Conv_0

k = 3
Cin = 1

Cout = 32

Max pool
k = 2

Max pool
k = 2

Conv_1

k = 3

Cin = 32
Cout = 64

h(0) h(0)
pool h(1) h(1)

pool

h(1) ∈ ℝ64×14×14

6414

14 h(1)
pool ∈ ℝ64×7×7

64
7

7

Flattening

• The last layer of a DNN is a linear layer applied to a feature vector

• We are almost there, but our representation is still a tensor

• We simply vectorise, or flatten our representation into a vector

ϕ(x)

x
Conv_0

k = 3
Cin = 1

Cout = 32

Max pool
k = 2

Max pool
k = 2

Conv_1

k = 3

Cin = 32
Cout = 64

Flatten
ϕ(x)h(0) h(0)

pool h(1) h(1)
pool

h(1)
pool ∈ ℝ64×7×7

64
7

7

[]
ϕ(x) ∈ ℝ3136

The way this is done doesn’t
matter as long as it is consistent

between data points

Linear classification

• Finally, we apply a linear transform to our feature vectors

• This gives us a vector that contains the logits for each class

f(x) = W(ℒ−1)ϕ(x) + b(ℒ−1)

x
Conv_0

k = 3
Cin = 1

Cout = 32

Max pool
k = 2

Max pool
k = 2

Conv_1

k = 3

Cin = 32
Cout = 64

Flatten Linear
3136 → 10 f(x)

ϕ(x)h(0) h(0)
pool h(1) h(1)

pool

[]
ϕ(x) ∈ ℝ3136

21.6
−12.3

5.3
−7.0
−2.9
−6.9

4.3
−6.6

0.9
0.4

f(x) ∈ ℝ10

Here the logit for class 0 (21.6) is
the largest

It follows that the probability the
input is this class is also largest so
it is sensible to classify as class 0

(Lack of) interpretability

• It’s pretty difficult to interpret what exactly is happening

• We can look at all the different channels of and to try and get an idea

• These models are still very hard to interpret

h(0) h(1)

h(1) ∈ ℝ64×14×14h(0) ∈ ℝ32×28×28

GPUs

• Convolutions can be naively implemented in a loop, however loops are slow

• Convolutions are implemented by turning both the input and filters into two
big matrices and multiplying them

• Graphics processing units (GPUs) can do matrix-multiplies very fast

• They are essential for training all but the smallest DNNs

Why bother?

• A benchmark in computer vision is classification performance on ImageNet

• It is a 1000-way classification task with 1 million training images

• For the 2012 ImageNet challenge:

The 2nd place model used handcrafted features and got 26.2% top 5-error

The 1st place model used a deep ConvNet and got 15.3% top 5-error (&
36.7% top 1-error)

https://arxiv.org/pdf/1409.0575.pdf

AlexNet (2012)

• The winning entry. It’s split into two streams for 2 GPUs because of memory
constraints (that no longer exist :))

• 5 convolutional layers, 3 max pools (interspersed), and 3 FC layers

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Deeper and deeper on ImageNet

• 2014: A 16 layer (13 conv + 3 FC) VGG net can achieve 8.4% top-5 error

• 2015: ResNets use skip connections to go very deep. A 152 layer ResNet
gets a top-5 error of 4.49%

https://arxiv.org/pdf/1512.03385.pdf

https://paperswithcode.com/sota/image-classification-on-imagenet

ImageNet top-1 accuracies

Vision transformers

• ConvNets are no longer state-of-the art in computer vision

• But they are still widespread so learning about them wasn’t a waste :)

https://arxiv.org/pdf/2010.11929v2.pdf

Why not use deep learning for everything?

• Deep learning beats other ML approaches for learning on images, text, and
audio data

• DNNs are surpassed by decision tree-based models on tabular data

• DNN are near-impossible to interpret, so when this is required a linear model
is preferable

• DNNs need lots of data to train from scratch which we may not have!

• We can however use their features for related tasks

https://arxiv.org/pdf/2207.08815.pdf

Summary

• We have looked at properties of images to justify the need to retain spatial
information

• We have seen how 2D convolutions work, and how to performing pooling

• We have looked at a simple ConvNet architecture in detail

• We have had a brief history lesson in the evolution of ConvNets

• We have considered when it is appropriate to use deep learning

The end (of the lectures)

• You have visualised and analysed data

• You have considered the ethical implications of deploying ML in society

• You have learnt about linear models for classification and regression

• You have learnt about non-parametric and non-linear models

• You have written code to use these models

I hope you enjoyed it!

