Data Analysis and Machine Learning 4

Week 10: Convolutional neural networks

Recap

- We learnt about deep neural networks (DNNs) as models that incorporate feature learning into a given task

$$
\mathbf{x} \longrightarrow f^{(0)} \xrightarrow{\mathbf{h}^{(0)}} f^{(1)} \xrightarrow{\mathbf{h}^{(1)}} \mathbf{h}^{(\mathscr{L}-3)} f^{(\mathscr{Y}-2)} \underset{\phi(\mathbf{x})}{\mathbf{h}^{(\mathscr{L}-2)}} f^{(\mathcal{Y}-1)} \mathbf{h}^{(\mathscr{L}-1)} f(\mathbf{x})
$$

- We examined MLPs and how to learn their weights using the gradients obtained through backpropagation

Convolutional Neural Networks (ConvNets)

Images

- So far we have represented all our data points as vectors $\mathbf{x} \in \mathbb{R}^{D}$
- This makes sense with tabular data. Each dimension has a distinct meaning
- Does it make sense to vectorise images?

Location, location, location

- Objects can be in different places and at different scales across images
- If you vectorise then you are rarely comparing like-for-like at each dimension

Structure

- Objects have a spatial structure. The position of relative parts is important
- We lose this information if we vectorise

Locality

- In an image, pixels near each other tend to relate to the same object
- We lose any sense of locality when we vectorise images

Spatial information is important

- Let's keep the image in its original form! This is a cube(/oid) with dimensions $H \times W \times C$ where C is the number of colour channels (almost always 3)
- We can represent this mathematically using a 3D tensor $\mathbf{x} \in \mathbb{R}^{C \times H \times W}$
- In Python this is just a 3D array

We can't use an MLP any more :(

- We want to use a DNN $f(\mathbf{x})=f^{(\mathscr{L}-1)} \circ f^{(\mathscr{L}-2)} \circ \ldots \circ f^{(1)} \circ f^{(0)}(\mathbf{x})$ on images
- The fully-connected layers that make up an MLP work on vectors
- We need a new functional layer that works for 3D tensors

$$
\begin{aligned}
& \mathbf{x} \longrightarrow f^{(0)} \longrightarrow \mathbf{h}^{(1)} \longrightarrow f^{(1)} \longrightarrow \mathbf{h}^{(2)} \ldots, \quad \mathbf{h}^{(l)}=f^{(l)}\left(\mathbf{h}^{(l-1)}\right)=g(?)
\end{aligned}
$$

Convolutions

- We don't just want a functional layer that works
- We want something that is computationally efficient and suitable given all the things we know about images
- 2D convolutions fit this brief and are used heavily in image processing
- These populate most layers in Convolutional neural networks (ConvNets)

2D Convolution with a single filter

- The 2D convolutions in ConvNets consist of multiple filters
- Let's see how 2D convolution with a single filter works
- We will consider a 2D input (e.g. a grayscale image) for now
- For these, a filter is a $k \times k$ matrix where k is the kernel size

$$
\left[\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right] \mathscr{H}=
$$

2D Convolution with a single filter

- We place the filter over the input and slide it around to every possible position
- At each position, we take the dot product between the filter and the overlapping input elements
- This result is stored in the corresponding position of the output matrix

2D Convolution with a single filter

- There are four possible places this filter can go
- These correspond to the four elements of the output matrix
- We take the dot product at each position and store it in the output

2D Convolution with multiple filters

- One filter gave us one output matrix
- Two filters gives us two output matrices that we stack to form a tensor
- And so on...

What happens if the inputs are 3D?

- We can still perform a 2D convolution on a 3D input
- We get one output matrix per filter as before
- The only difference is that the filters are $C \times k \times k$ tensors (cubes)

Cube in a cube

- Picture sliding the filter cube around inside the input cube
- It can't move along the z axis because the cubes have the same depth
- It can only move left/right and up/down
- At each position, you take a dot product and store it in a matrix

Padding

- It is common practice to pad the input with zeros so that the input and output have the same height and width after a convolution
- We will assume that this always happens hereon for ease

Conv2D

: $C_{\text {out }}$ filters
$\mathbf{W} \in \mathbb{R}^{C_{o u t} \times C_{i n} \times k \times k}$
$\mathbf{x} \in \mathbb{R}^{C_{i n} \times H \times W}$
$\mathbf{y} \in \mathbb{R}^{C_{\text {out }} \times H \times W}$

Convolutional layers

- After all that, we can finally unveil what a convolutional layer looks like!
- In an MLP we had $\mathbf{h}^{(l)}=f^{(l)}\left(\mathbf{h}^{(l-1)}\right)=g\left(\mathbf{W}^{(l)} \mathbf{h}^{(l-1)}+\mathbf{b}^{(l)}\right)$
- A convolutional layer looks like $\mathbf{h}^{(l)}=f^{(l)}\left(\mathbf{h}^{(l-1)}\right)=g\left(\mathbf{W}^{(l)} * \mathbf{h}^{(l-1)}+\mathbf{b}^{(l)}\right)$
- That's it!

Why convolutions?

- They are much more parameter-efficient than the matrices seen MLPs
- e.g. Let's have a simple 2 layer MLP for classifying my face vs. other faces
- Let's go with hidden dimension 100 . How many parameters does $\mathbf{W}^{(0)}$ use?

$\mathbf{x} \in \mathbb{R}^{3 \times 224 \times 224}$
$\mathbf{x} \in \mathbb{R}^{150528}$
$\mathbf{W}^{(0)}$ needs to be 100×150528

That's 15 million parameters!

Why convolutions?

- Filters are applied to the whole image, they aren't tied to a certain region
- This means they can deal with objects moving: they'll produce a similar output response, just at a different location
- They are equivariant to translation

Pooling layers

- There's one last thing to cover before we can look at a whole ConvNet
- Pooling layers - these reduce the spatial resolution of their input by aggregating nearby elements
- Let's look at an example on an 2D input of a max pooling layer with $k=2$

1	5	3	2
0	2	1	1
4	4	6	35
4	4	6	17

The input has been split into
2×2 blocks
The output matrix contains the maximum value within each block

It's spatial resolution has been halved

Average pooling

1	5	3	2
0	2	1	1
4	4	6	35
4	4	6	17

ConvNets

- ConvNets consist of assorted convolutional and pooling layers, and end with one or more fully-connected layers, the last of which is (usually) linear
- Let's look at a small ConvNet architecture trained to classifying MNIST digits
- The 10D output gives the logits for each class $0,1,2,3, \ldots$

Conv_0

- This layer takes our (padded) image input and applies 32 filters
- We then add a bias to each output channel and apply a ReLU non-linearity

$\mathbf{W}^{(\mathbf{0})} \in \mathbb{R}^{32 \times 1 \times 3 \times 3}$
$\mathbf{x} \in \mathbb{R}^{1 \times 28 \times 28}$

$\mathbf{h}^{(0)} \in \mathbb{R}^{32 \times 28 \times 28}$

Max pool

- This reduces spatial resolution
- The purpose of this is to build translation invariance into our representations

Conv_1

- This layer takes our (padded) pooled represented and applies 64 filters
- We then add a bias to each output channel and apply a ReLU non-linearity

Max pool

- This reduces spatial resolution again...

Flattening

- The last layer of a DNN is a linear layer applied to a feature vector $\phi(\mathbf{x})$
- We are almost there, but our representation is still a tensor
- We simply vectorise, or flatten our representation into a vector

The way this is done doesn't matter as long as it is consistent between data points

Linear classification

- Finally, we apply a linear transform to our feature vectors

$$
f(\mathbf{x})=\mathbf{W}^{(\mathscr{L}-1)} \phi(\mathbf{x})+\mathbf{b}^{(\mathscr{L}-1)}
$$

- This gives us a vector that contains the logits for each class

Here the logit for class 0 (21.6) is the largest

It follows that the probability the input is this class is also largest so it is sensible to classify as class 0

(Lack of) interpretability

- It's pretty difficult to interpret what exactly is happening
- We can look at all the different channels of $\mathbf{h}^{(0)}$ and $\mathbf{h}^{(1)}$ to try and get an idea
- These models are still very hard to interpret

$\mathbf{h}^{(0)} \in \mathbb{R}^{32 \times 28 \times 28}$

$\mathbf{h}^{(1)} \in \mathbb{R}^{64 \times 14 \times 14}$

GPUs

- Convolutions can be naively implemented in a loop, however loops are slow
- Convolutions are implemented by turning both the input and filters into two big matrices and multiplying them
- Graphics processing units (GPUs) can do matrix-multiplies very fast
- They are essential for training all but the smallest DNNs

Why bother?

- A benchmark in computer vision is classification performance on ImageNet
- It is a 1000-way classification task with 1 million training images
- For the 2012 ImageNet challenge:
- The 2nd place model used handcrafted features and got 26.2\% top 5-error
- The 1st place model used a deep ConvNet and got 15.3\% top 5-error (\& 36.7% top 1-error)

AlexNet (2012)

- The winning entry. It's split into two streams for 2 GPUs because of memory constraints (that no longer exist :))
- 5 convolutional layers, 3 max pools (interspersed), and 3 FC layers

Deeper and deeper on ImageNet

- 2014: A 16 layer (13 conv + 3 FC) VGG net can achieve 8.4% top-5 error
- 2015: ResNets use skip connections to go very deep. A 152 layer ResNet gets a top-5 error of 4.49\%

ImageNet top-1 accuracies

Dataset

Vision transformers

- ConvNets are no longer state-of-the art in computer vision
- But they are still widespread so learning about them wasn't a waste :)

Why not use deep learning for everything?

- Deep learning beats other ML approaches for learning on images, text, and audio data
- DNNs are surpassed by decision tree-based models on tabular data
- DNN are near-impossible to interpret, so when this is required a linear model is preferable
- DNNs need lots of data to train from scratch which we may not have!
- We can however use their features for related tasks

Summary

- We have looked at properties of images to justify the need to retain spatial information
- We have seen how 2D convolutions work, and how to performing pooling
- We have looked at a simple ConvNet architecture in detail
- We have had a brief history lesson in the evolution of ConvNets
- We have considered when it is appropriate to use deep learning

The end (of the lectures)

- You have visualised and analysed data
- You have considered the ethical implications of deploying ML in society
- You have learnt about linear models for classification and regression
- You have learnt about non-parametric and non-linear models
- You have written code to use these models

