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Data Analysis and Machine 
Learning 4
Week 3: Preprocessing, PCA, clustering



Recap

• We reviewed summary statistics for datasets


• We considered different ways to visualise data



This week 

• You will learn how to preprocess data so it can be used for various algorithms


• There will be some linear algebra revision


• You will learn about PCA and how it can be used for dimensionality reduction


• You will find out how to cluster data using the K-means algorithm



Preprocessing



Matrix inputs

• PCA and many machine learning (ML) methods require a matrix input


• Our dataset must be represented by a matrix of real continuous values


• Given tabular data, we need to convert it into such a matrix

?



Representing a dataset as a matrix

• We have tabular data with  data items (rows) and  attributes (cols)


• For ease of exposition, we will drop attributes that don’t correspond to 
continuous variables


• If there are now  attributes we can represent the dataset by a  matrix

N C

D N × D

X =

185 32
193 70
147 77
163 26

X ∈ ℝN×D



Representing data points as vectors

• We are representing our dataset using a  dataset matrix 


• Each row is a data item or data point that lives in -dimensional space


• Let’s denote these as  or . They are vectors

N × D X

D

x(0), x(1), x(2), …, x(N−1) {x(n)}N−1
n=0

X =

185 32
193 70
147 77
163 26

X ∈ ℝN×D x ∈ ℝD

x(0)

x(1)x(2)

x(3)

Credit to Iain Murray for the notation



Data points are column vectors 

• It is standard with tabular data to have the rows as data points


• But in ML literature it is convention to denote all vectors including data points 
 as column vectors 


• It is also convention to represent a dataset as  (in the same way 
we just did) where the rows are those data points


• Just be aware of this peculiarity!

x

X ∈ ℝN×D

X =

x(0)⊤

x(1)⊤

x(2)⊤

⋮
x(N−1)⊤

=

x(0)
0 x(0)

1 … x(0)
D−1

x(1)
0 x(1)

1 … x(1)
D−1

x(2)
0 x(2)

1 … x(2)
D−1

… … ⋱ ⋮
x(N−1)

0 x(N−1)
1 … x(N−1)

D−1

x(n) =

x(n)
0

x(n)
1
⋮

x(n)
D−1

x =

x0
x1
⋮

xD−1



Why vectors?

• We can now use the machinery of linear algebra for PCA and ML


• Matrices linearly transform vectors


• Computers are very good at matrix multiplication 


• Neural networks consist of multiple matrices (See Week 9!)



Can we represent other types of data as vectors?

• Yes! We can flatten or vectorise images 


• We can represent text data as a histogram of word counts (a bag of words) 
e.g. [ # “I”, # “like”, # “sausage”, # “hate”]

[ ]⊤

⊤

I like sausage sausage sausageI hate sausage

[1 1 1 0]⊤ [1 0 1 1]⊤ [0 0 2 0]⊤

[ ]



Standardising your data

• Measurements of different variables can have vastly different scales


• We want to compare variables like-for-like and not let those with large values 
dominate


• The solution is to standardise your data


• We want each column of  to have a mean of 0 and a SD of 1 X

X =

190 44 25000
143 36 29000
152 20 100000
178 56 67000

?



Standardising your data

• We want each column of  to have a mean of 0 and a SD of 1 


• For each column, compute the mean and SD


• Then subtract the mean from each value and divide by SD


• This is essential for PCA and many ML algorithms

X

μj =
1
N ∑

n

x(n)
j

σ2
j =

1
N ∑

n

(x(n)
j − μj)2

Xnew =

x (0)
0 − μ0

σ0

x(0)
1 − μ1

σ1
…

x(0)
D−1 − μN−1

σN−1

x (1)
0 − μ0

σ0

x(1)
1 − μ1

σ1
…

x(1)
D−1 − μN−1

σN−1

… … ⋱ ⋮
x (N−1)

0 − μ0

σ0

x(N−1)
1 − μ1

σ1
…

x(N−1)
D−1 − μN−1

σN−1

Xold =

x(0)
0 x(0)

1 … x(0)
D−1

x(1)
0 x(1)

1 … x(1)
D−1

… … ⋱ ⋮
x(N−1)

0 x(N−1)
1 … x(N−1)

D−1

I will use  to mean 

“sum over all ” 


∑
n

n



Normalising vs. standardising

• Nomenclature can vary but in this course standardising refers to scaling 
each variable to zero mean and unit variance


• We can do other forms of scaling e.g. divide each variable by its maximum 
value


• We will refer to other forms of scaling as normalising 

• Generally, anything that gets different variables to similar ranges is fine just 
make sure you do it!



Transformation matrices

(Linear algebra revision)



Using a matrix to transform a vector

• Assume we have a data point  and a matrix 


• If we multiply  by  then we get a transformed data point 

x ∈ ℝD1 A ∈ ℝD2×D1

A⊤ x y ∈ ℝD2

xy A⊤=D2

D1

D1D2

y = A⊤x



Using a matrix to transform multiple vectors

• If we want do this to multiple data points  then we can transpose 
each, and then post-multiply by 


• This gives us the transposes of  transformed data points 

{x(n)}N−1
n=0

A

{y(n)}N−1
n=0

x(1)⊤y(1)⊤
A= D1

D2

x(0)⊤

x(N−1)⊤

y(0)⊤

y(N−1)⊤

⋮ ⋮

D2 D1
y⊤ = x⊤A



Matrix multiplication

• We want to transform all our  into  in parallel


•  We can form a dataset matrix  and post-multiply by 


• This gives us a transformed dataset matrix  whose rows are 
transformed data points

{x(n)}N−1
n=0 {y(n)}N−1

n=0

X ∈ ℝN×D1 A

Y ∈ ℝN×D2

=

D1

D2D1

AY

D2

X

N N

Y = XA



Changing dimensionality

•  transforms the vectors  into 


• Recall that , ,  


•  is fixed but  can vary

Y = XA {x(n)}N−1
n=0 {y(n)}N−1

n=0

A ∈ ℝD2×D1 x ∈ ℝD1 y ∈ ℝD2

D1 D2

A A A



 square


Dimensionality of each  stays the same 

D2 = D1
A

x



 wide


Dimensionality of each  goes up

D2 > D1
A

x



 thin


Dimensionality of each  goes down

D2 < D1
A

x



Mapping in the same space

• Consider a dataset  that consists of 2D points on a circle


• If  then  maps each point to a new point within 2D space


• These new points are the rows of  where 

X ∈ ℝ20×2

A ∈ ℝ2×2 XA

Y ∈ ℝ20×2 Y = XA

A = [2 0
0 0.5] A

 and  are the dimensions of  and so onx0 x1 x



• New dimensions are linear combinations of old dimensions


• The columns of  are basis vectorsA

 causes a change of basisY = XA

[y0 y1] = [x0 x1] [2 0
0 0.5]

y0 = 2x0

y1 = 0.5x1 A



• If the dot product of the basis vectors is 0 then they form an orthogonal basis


• If they are also unit norm then we call this an orthonormal basis

Orthogonality and orthonormality

A = [a0 a1] = [2 0
0 0.5]

a0 ⋅ a1 = 2 × 0 + 0 × 0.5 = 0

∥a0∥ = 22 + 02 = 2

∥a1∥ = 02 + 0.52 = 0.5
Orthogonal

A =

1

2

1

2

− 1

2

1

2

Orthonormal

a0 ⋅ a1 = 0

∥a0∥ = 1

∥a1∥ = 1



• A matrix  that forms an orthonormal basis is called an orthonormal matrix


• These are invertible which means no information is lost


• Their inverse is also their transpose i.e. 

A

A−1 = A⊤

Invertibility

A⊤A



Mapping in the same space … in 3D!

• Consider a dataset  that consists of points on a sphere


• We can use a rotation matrix to rotate these points around an axis


• This is mapping each point to a new position within this 3D space

X ∈ ℝ625×3

A =
1 0 0
0 cos θ −sin θ
0 sin θ cos θ

A



Change of basis

We have  and for 90 degrees 
Y = XA A = [
1 0 0
0 0 −1
0 1 0 ]

y0 = x0

y1 = − y2

y2 = x1

A



• If  then  maps each 3D point to a 2D point


• This throws away information

A ∈ ℝ3×2 XA

Dimensionality reduction

y0 = x0

y1 = x1

A = [
1 0
0 1
0 0] A



If  then  maps each 3D point to a 2D pointA ∈ ℝ3×2 XA

Dimensionality reduction

y0 = x0 + x1 + x2

y1 = x0 − x1 + 2x2

A = [
1 1
1 −1
1 2 ]

A



Principal Component Analysis 
(PCA)



Motivation for PCA

• Most data is high dimensional


• This makes it hard to visualise patterns across a whole dataset

Tables with >3 columns

Time series with thousands of points

Images with millions of pixels



Motivation for PCA
• We could use a transform to reduce the dimensionality of our data e.g. to 2D


• Then we could simply look at a scatter plot to find patterns


• But how do we know what the best transform is? (Spoilers: it involves PCA)



Principal Component Analysis (PCA)

• Consider a standardised dataset matrix 


• PCA takes  and returns an orthonormal matrix 


• We can then transform  using 


• The new dimensions  are linear combinations of the old dimensions 

X ∈ ℝN×D

X W ∈ ℝD×D

X Y = XW

y0, y1, …
x0, x1, …

W ?



• The data is transformed so there is as much variance as possible in 


•  best explains the data in 1D

y0

y0

Maximum variance 

W



Arranging dimensions by decreasing variance

• There is the most variance in  and there is the next most variance in 


•  and  best explain the data in 2D


• And so on!

y0 y1

y0 y1

W



Computing principal components

For a standardised dataset , PCA gives you a matrix 


The columns of :  are the principal components of the data


To compute these:


1. Construct the covariance matrix 


2. Eigendecompose  to eigenvalue, eigenvector pairs


3. Sort pairs by decreasing eigenvalue and denote as ,

X ∈ ℝN×D W ∈ ℝD×D

W {wd}D−1
d=0

Σ =
1
N

X⊤X

Σ

{λd}D−1
d=0 {wd}D−1

d=0

These vectors are

the principal components



PCA for dimensionality reduction

• PCA gives us  where 


• To reduce to  dimensions we can just keep the first  columns


• e.g.  would take our data to 2D using 

W ∈ ℝD×D W = [w0 w1 … wD−1]

d < D d

Wd=2 = [w0 w1] Y = XWd=2

Wd=2



PCA for dimensionality reduction on irises

• The iris dataset contains 150 data points


• Let’s take the numeric columns to form a dataset matrix 


• Make sure that  is standardised 

X ∈ ℝ150×4

X
5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2… … … …
0.7 3.0 5.2 2.3
6.3 2.5 5.0 1.9
6.5 3.0 5.2 2.0
6.2 3.4 5.4 2.3
5.9 3.0 5.1 1.8

5.1 3.5 1.4 0.2
0.9 1.0 −1.3 −1.3

−1.1 −0.1 −1.3 −1.3
−1.4 0.3 −1.4 −1.3
−1.5 0.1 −1.3 −1.3
−1.0 1.2 −1.3 −1.3… … … …

.0 −0.1 0.8 1.4
0.6 −1.3 0.7 0.9
0.8 −0.1 0.8 1.1
0.4 0.8 0.9 1.4
0.1 −0.1 0.8 0.8



PCA for dimensionality reduction on irises

• Use PCA to form 


• Now use  to project down to 2D


• Different species are distinguishable just by looking at 


• These new dimensions were found automatically

W ∈ ℝ4×4

Y = X [w0 w1]

y0

y0 = − 0.52x0 − 0.27x1 − 0.58x2 + 0.56x3

y1 = − 0.38x0 + 0.92x1 + 0.02x2 + 0.07x3



PCA for dimensionality reduction on wine

• We have a red wine dataset 


• Each wine has also been scored by an expert between 0 and 10


• We can look at a few examples but it’s hard to get the full picture

X ∈ ℝ1599×11



PCA for dimensionality reduction on wine

• Let’s standardise our data, and then use PCA to form 


• Now use  to project down to 2D

W ∈ ℝ11×11

Y = X [w0 w1]



PCA for dimensionality reduction on wine

• We can see in this space that good wines tend to be near the bottom


• What makes a good wine? A negative  of course!y1



Good wine recipe - make  negative y1

• The new dimensions are just linear combinations of the original dimensions


• In a lot of cases the new dimensions aren’t very intuitive 


• PCA is best used for exploratory data analysis

y1 = − 0.11x0 + 0.27x1 − 0.15x2 + 0.27x3 + 0.15x4 + 0.51x5 + 0.57x6 + 0.23x7 + 0.01x8 − 0.04x9 − 0.39x10



Importance of components

• Performing PCA gives us eigenvalue, eigenvector pairs , 


• The eigenvectors are our principal components


• The eigenvalues are an importance weighting for each component


The first principal component explains  % of the variance of the data

{λd}D−1
d=0 {wd}D−1

d=0

λ0

∑d λj



Importance of components

The first principal component explains  % of the variance


It follows that the first  principal components account for  %


Be careful throwing away dimensions if not enough variance is explained

λ0

∑d λj

M
∑M−1

d=0 λj

∑d λj



Explaining variance of irises

1D: 73% 2D: 96% 3D: 99%



Explaining variance of wine

1D: 28% 2D: 45% 3D: 60%



Reconstructing a dataset

•  projects data from  dimensions to  dimensions


• Let’s assume we can use  to bring the projected data back up to  dims


• We can then define our reconstructed dataset as  


Y = XWd D d

W⊤
d D

X̃ = YW⊤
d = XWdW⊤

d

Wd=1 W⊤
d=1



Reconstruction error

• For a good reconstruction, reconstructed points should be near the originals


• i.e. the (average) distance between them should be low 


• Our points are  with reconstructions 
{x(n)}N−1
n=0 {x̃(n)}N−1

n=0

Er =
1
N ∑

n

∥x(n) − x̃(n)∥ =
1
N ∑

n

∥x(n) − WdW⊤
d x(n)∥

Reconstruction error

 for the dataset matrix means  
for each column vector data point


XWdW⊤
d WdW⊤

d x



Minimising reconstruction error

• We have a reconstruction error that we want to minimise


•  does minimise this!


• PCA gives you the best possible matrix for making  as small as possible


• Minimising reconstruction error is equivalent to maximising variance

Wd

Er

Er =
1
N ∑

n

∥x(n) − x̃(n)∥ =
1
N ∑

n

∥x(n) − WdW⊤
d x(n)∥

Proof: http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf p324 

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf


Limitations: PCA is susceptible to outliers
Outliers can change the direction of maximum variance

W



Limitations: PCA is linear
If the direction of maximum variance isn’t a line, PCA can’t find it

W



Clustering with K-means



Motivation
You have a dataset that you want to split into groups


- people with low, medium, high income for marketing 


- grouping shoppers to recommend products


- identifying personality types for a dating website 



K-means

• We can use K-means to automatically split our dataset in groups


• Other clustering algorithms are available!



K-means algorithm

• Select the number of clusters 


• Initialise the cluster centres  at random


• Repeat:


1. Assign each standardised data point to its nearest cluster centre


2. Update cluster centres as mean of their assigned points


• Until no change

K

{ck}K−1
k=0

Credit: Andrew Zisserman (for the slide idea, not the algorithm)



K-means walkthrough with K = 3

Initialise the cluster centres  at random{ck}K−1
k=0 Assign each data point to its nearest cluster centre



K-means walkthrough with K = 3

Update cluster centres as mean of their assigned points Assign each data point to its nearest cluster centre

And so on!



Warning

• K-means is very sensitive to where the initial cluster centres are placed


• The number of clusters is user defined


• The clusters might not be meaningful

This data is just noise!



Summary

• We have revised some linear algebra


• We have learnt how to preprocess data so it can be used for some algorithms


• We have seen how PCA can be used for dimensionality reduction


• We have been introduced to K-means and how it can cluster data


