Data Analysis and Machine Learning 4 Week 3: Preprocessing, PCA, clustering

Elliot J. Crowley, 30th January 2023

of EDINBURGH

Recap

• We reviewed summary statistics for datasets

• We considered different ways to visualise data

This week

- You will learn how to preprocess data so it can be used for various algorithms There will be some linear algebra revision
- You will learn about PCA and how it can be used for dimensionality reduction
- You will find out how to cluster data using the K-means algorithm

Preprocessing

Matrix inputs

- PCA and many machine learning (ML) methods require a matrix input
- Our dataset must be represented by a matrix of real continuous values
- Given tabular data, we need to convert it into such a matrix

	Height (cm)	Age	Favourite colour
0	185	32	blue
1	193	70	red
2	147	77	brown
3	163	26	blue

Representing a dataset as a matrix

- We have tabular data with N data items (rows) and C attributes (cols)
- For ease of exposition, we will drop attributes that don't correspond to continuous variables
- If there are now D attributes we can represent the dataset by a $N \times D$ matrix

	Height (cm)	Age	Favourite colour	ŀ	
0	185	32	blue	0	
1	193	70	red	1	
2	147	77	brown	2	
3	163	26	blue	3	

Representing data points as vectors

- We are representing our dataset using a $N \times D$ dataset matrix X
- Each row is a data item or **data point** that lives in D-dimensional space

• Let's denote these as $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N-1)}$ or $\{\mathbf{x}^{(n)}\}_{n=0}^{N-1}$. They are vectors

Data points are column vectors

- It is standard with tabular data to have the rows as data points
- But in ML literature it is convention to denote all vectors including data points
 x as column vectors
- It is also convention to represent a dataset as $\mathbf{X} \in \mathbb{R}^{N imes D}$ (in the same way we just did) where the **rows** are those data points
- Just be aware of this peculiarity!

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{D-1} \end{bmatrix} \qquad \mathbf{x}^{(n)} = \begin{bmatrix} x_0^{(n)} \\ x_1^{(n)} \\ \vdots \\ x_{D-1} \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(0)^{\mathsf{T}}} \\ \mathbf{x}^{(1)^{\mathsf{T}}} \\ \mathbf{x}^{(2)^{\mathsf{T}}} \\ \vdots \\ \mathbf{x}^{(N-1)^{\mathsf{T}}} \end{bmatrix} = \begin{bmatrix} x_0^{(0)} & x_1^{(0)} & \dots & x_{D-1}^{(0)} \\ x_0^{(1)} & x_1^{(1)} & \dots & x_{D-1}^{(1)} \\ x_0^{(2)} & x_1^{(2)} & \dots & x_{D-1}^{(2)} \\ \dots & \dots & \ddots & \vdots \\ x_0^{(N-1)} & x_1^{(N-1)} & \dots & x_{D-1}^{(N-1)} \end{bmatrix}$$

Why vectors?

- We can now use the machinery of linear algebra for PCA and ML
- **Matrices linearly transform vectors**
- Computers are very good at matrix multiplication
- Neural networks consist of multiple matrices (See Week 9!)

Can we represent other types of data as vectors?

• Yes! We can flatten or *vectorise* images

e.g. [#"I", #"like", #"sausage", #"hate"]

I like sausage I hate sausage

 $\begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^{\top}$ $\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}^{\top}$

• We can represent text data as a histogram of word counts (a bag of words)

sausage sausage

 $\begin{bmatrix} 0 & 0 & 2 & 0 \end{bmatrix}^{+}$

Standardising your data

- Measurements of different variables can have vastly different scales
- We want to compare variables like-for-like and not let those with large values dominate
- The solution is to **standardise** your data
- We want each column of \boldsymbol{X} to have a mean of 0 and a SD of 1

	Height (cm)	Age	Salary (£)	
0	190	44	25000	
1	143	36	29000	
2	152	20	100000	
3	178	56	67000	

 190
 44
 25000

 143
 36
 29000

 152
 20
 100000

 178
 56
 67000

Standardising your data

- We want each column of \mathbf{X} to have a mean of 0 and a SD of 1
- For each column, compute the mean and SD
- Then subtract the mean from each value and divide by SD
- This is essential for PCA and many ML algorithms

$$\mathbf{X}_{old} = \begin{bmatrix} x_0^{(0)} & x_1^{(0)} & \dots & x_{D-1}^{(0)} \\ x_0^{(1)} & x_1^{(1)} & \dots & x_{D-1}^{(1)} \\ \dots & \dots & \ddots & \vdots \\ x_0^{(N-1)} & x_1^{(N-1)} & \dots & x_{D-1}^{(N-1)} \end{bmatrix} \qquad \mu_j = \frac{1}{N} \sum_n \mathbf{x}_j^{(n)} \\ \sigma_j^2 = \frac{1}{N} \sum_n (\mathbf{x}_j^{(n)} - \mu_j)^2 \qquad \mathbf{X}_{new} = \begin{bmatrix} \frac{x_0^{(0)} - \mu_0}{\sigma_0} & \frac{x_1^{(0)} - \mu_1}{\sigma_1} & \dots & \frac{x_{D-1}^{(0)} - \mu_{N-1}}{\sigma_{N-1}} \\ \frac{x_0^{(N-1)} - \mu_0}{\sigma_0} & \frac{x_1^{(N-1)} - \mu_1}{\sigma_1} & \dots & \frac{x_{D-1}^{(N-1)} - \mu_{N-1}}{\sigma_{N-1}} \end{bmatrix}$$

Normalising vs. standardising

- Nomenclature can vary but in this course <u>standardising</u> refers to scaling each variable to zero mean and unit variance
- We can do other forms of scaling e.g. divide each variable by its maximum value
- We will refer to other forms of scaling as <u>normalising</u>
- Generally, anything that gets different variables to similar ranges is fine just make sure you do it!

Transformation matrices (Linear algebra revision)

Using a matrix to transform a vector

- Assume we have a data point $\mathbf{x} \in \mathbb{R}^{D_1}$ and a matrix $\mathbf{A} \in \mathbb{R}^{D_2 \times D_1}$
- If we multiply \mathbf{A}^{T} by \mathbf{x} then we get a transformed data point $\mathbf{y} \in \mathbb{R}^{D_2}$

Using a matrix to transform multiple vectors

- each, and then post-multiply by A
- This gives us the transposes of transformed data points $\{\mathbf{y}^{(n)}\}_{n=0}^{N-1}$

• If we want do this to multiple data points $\{\mathbf{x}^{(n)}\}_{n=0}^{N-1}$ then we can transpose

Matrix multiplication

- We want to transform all our $\{\mathbf{x}^{(n)}\}_{n=0}^{N-1}$ into $\{\mathbf{y}^{(n)}\}_{n=0}^{N-1}$ in parallel
- We can form a dataset matrix $X \in \mathbb{R}^{N \times D_1}$ and post-multiply by A
- This gives us a transformed dataset matrix $\mathbf{Y} \in \mathbb{R}^{N \times D_2}$ whose rows are transformed data points

\mathbb{R}^{N-1} into $\{\mathbf{y}^{(n)}\}_{n=0}^{N-1}$ in parallel $\mathbb{R}^{N \times D_1}$ and post-multiply by **A**

Changing dimensionality

- $\mathbf{Y} = \mathbf{X}\mathbf{A}$ transforms the vectors $\{\mathbf{x}^{(n)}\}_{n=0}^{N-1}$ into $\{\mathbf{y}^{(n)}\}_{n=0}^{N-1}$
- Recall that $\mathbf{A} \in \mathbb{R}^{D_2 \times D_1}$, $\mathbf{x} \in \mathbb{R}^{D_1}$, $\mathbf{y} \in \mathbb{R}^{D_2}$
- D_1 is fixed but D_2 can vary

 $D_2 = D_1$ A square Dimensionality of each **x** stays the same

 $D_{2} > D_{1}$ A wide Dimensionality of each **x** goes up

Dimensionality of each **x** goes down

 $D_2 < D_1$

A thin

Mapping in the same space

- Consider a dataset $X \in \mathbb{R}^{20 \times 2}$ that consists of 2D points on a circle
- If $A \in \mathbb{R}^{2 \times 2}$ then XA maps each point to a new point within 2D space
- These new points are the rows of $Y \in \mathbb{R}^{20 \times 2}$ where Y = XA

$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$

 x_0 and x_1 are the dimensions of x and so on

Y = XA causes a change of basis

- New dimensions are linear combinations of old dimensions
- The columns of A are basis vectors

Orthogonality and orthonormality

- If the dot product of the basis vectors is 0 then they form an orthogonal basis
- If they are also unit norm then we call this an orthonormal basis

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_0 & \mathbf{a}_1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$\mathbf{a}_0 \cdot \mathbf{a}_1 = 2 \times 0 + 0 \times 0.5 = 0$$

$$\|\mathbf{a}_0\| = \sqrt{2^2 + 0^2} = 2$$

$$\|\mathbf{a}_1\| = \sqrt{0^2 + 0.5^2} = 0.5$$

Orthogonal

$$\mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\mathbf{a}_0 \cdot \mathbf{a}_1 = \mathbf{0}$$

- $\|\mathbf{a}_0\| = 1$
- $\|\mathbf{a}_1\| = 1$

Orthonormal

Invertibility

- A matrix ${f A}$ that forms an orthonormal basis is called an orthonormal matrix
- These are invertible which means no information is lost
- Their inverse is also their transpose i.e. $\mathbf{A}^{-1} = \mathbf{A}^{\top}$

Mapping in the same space ... in 3D!

- Consider a dataset $\mathbf{X} \in \mathbb{R}^{625 imes 3}$ that consists of points on a sphere
- We can use a rotation matrix to rotate these points around an axis
- This is mapping each point to a new position within this 3D space

Change of basis

We have **Y** = **XA** and for 90 degrees **A** = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$

22

Dimensionality reduction

- If $\mathbf{A} \in \mathbb{R}^{3 \times 2}$ then $\mathbf{X}\mathbf{A}$ maps each 3D point to a 2D point
- This throws away information

×0

Dimensionality reduction

If $A \in \mathbb{R}^{3 \times 2}$ then XA maps each 3D point to a 2D point

 $y_0 = x_0 + x_1 + x_2$ $y_1 = x_0 - x_1 + 2x_2$

Principal Component Analysis (PCA)

Motivation for PCA

- Most data is high dimensional
- This makes it hard to visualise patterns across a whole dataset

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рΗ	sulphates	alcohol	•
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	

Tables with >3 columns

Time series with thousands of points

Images with millions of pixels

Motivation for PCA

- We could use a transform to reduce the dimensionality of our data e.g. to 2D
- Then we could simply look at a scatter plot to find patterns
- But how do we know what the best transform is? (Spoilers: it involves PCA)

Principal Component Analysis (PCA)

- Consider a <u>standardised</u> dataset matrix $\mathbf{X} \in \mathbb{R}^{N imes D}$
- PCA takes \mathbf{X} and returns an **orthonormal** matrix $\mathbf{W} \in \mathbb{R}^{D imes D}$
- We can then transform X using Y = XW
- The new dimensions y_0, y_1, \ldots are linear combinations of the old dimensions x_0, x_1, \ldots

Maximum variance

- The data is transformed so there is as much variance as possible in y_0
- y_0 best explains the data in 1D

Arranging dimensions by decreasing variance

- There is the most variance in y_0 and there is the next most variance in y_1
- y_0 and y_1 best explain the data in 2D
- And so on!

Computing principal components

- For a standardised dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$, PCA gives you a matrix $\mathbf{W} \in \mathbb{R}^{D \times D}$ The columns of W: $\{\mathbf{w}_d\}_{d=0}^{D-1}$ are the **principal components** of the data To compute these:
 - 1. Construct the covariance matr
 - 2. Eigendecompose Σ to eigenvalue, eigenvector pairs
 - 3. Sort pairs by decreasing eigenvalue and denote as $\{\lambda_d\}_{d=0}^{D-1}, \{\mathbf{w}_d\}_{d=0}^{D-1}$

$$\operatorname{ix} \mathbf{\Sigma} = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X}$$

These vectors are the principal components

PCA for dimensionality reduction

- PCA gives us $\mathbf{W} \in \mathbb{R}^{D \times D}$ where $\mathbf{W} = [\mathbf{W}_0 \ \mathbf{W}_1 \ \cdots \ \mathbf{W}_{D-1}]$
- To reduce to d < D dimensions we can just keep the first d columns
- e.g. $\mathbf{W}_{d=2} = [\mathbf{W}_0 \ \mathbf{W}_1]$ would take our data to 2D using $\mathbf{Y} = \mathbf{X}\mathbf{W}_{d=2}$

PCA for dimensionality reduction on irises

- The iris dataset contains 150 data points

Make sure that X is standardised

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

- Let's take the numeric columns to form a dataset matrix $\mathbf{X} \in \mathbb{R}^{150 imes 4}$

 $\begin{bmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \\ 4.6 & 3.1 & 1.5 & 0.2 \\ 5.0 & 3.6 & 1.4 & 0.2 \\ \dots & \dots & \dots & \dots \\ 0.7 & 3.0 & 5.2 & 2.3 \\ 6.3 & 2.5 & 5.0 & 1.9 \end{bmatrix} \longrightarrow \begin{bmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 0.9 & 1.0 & -1.3 & -1.3 \\ -1.1 & -0.1 & -1.3 & -1.3 \\ -1.4 & 0.3 & -1.4 & -1.3 \\ -1.5 & 0.1 & -1.3 & -1.3 \\ -1.0 & 1.2 & -1.3 & -1.3 \\ \dots & \dots & \dots \\ 0 & -0.1 & 0.8 & 1.4 \\ 0.6 & -1.2 & 0.7 & 0.0 \end{bmatrix}$ 2.5 5.0 1.9 6.3 0.9 0.6 - 1.3 0.76.5 3.0 5.2 2.0 -0.10.8 0.8 6.2 3.4 5.4 2.3 0.9 0.4 0.8 5.9 3.0 5.1 1.8 0.1 -0.1 0.8

PCA for dimensionality reduction on irises

- Use PCA to form $\mathbf{W} \in \mathbb{R}^{4 \times 4}$
- Now use $\mathbf{Y} = \mathbf{X} [\mathbf{W}_0 \ \mathbf{W}_1]$ to project down to 2D
- Different species are distinguishable just by looking at y_0
- These new dimensions were found automatically

$$y_0 = -0.52x_0 - 0.27x_1 - 0.58x_2 +$$

 $y_1 = -0.38x_0 + 0.92x_1 + 0.02x_2 + 0.07x_3$

- $0.56x_{3}$

PCA for dimensionality reduction on wine

- We have a red wine dataset $\mathbf{X} \in \mathbb{R}^{1599 \times 11}$
- Each wine has also been scored by an expert between 0 and 10
- We can look at a few examples but it's hard to get the full picture

_	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рΗ	sulphates	alcohol	qua
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	

PCA for dimensionality reduction on wine

- Let's standardise our data, and then use PCA to form $\mathbf{W} \in \mathbb{R}^{11 imes 11}$
- Now use $\mathbf{Y} = \mathbf{X} [\mathbf{W}_0 \ \mathbf{W}_1]$ to project down to 2D

PCA for dimensionality reduction on wine

- We can see in this space that good wines tend to be near the bottom
- What makes a good wine? A negative y_1 of course!

Good wine recipe - make y_1 negative

• The new dimensions are just linear combinations of the original dimensions

- In a lot of cases the new dimensions aren't very intuitive
- PCA is best used for exploratory data analysis

 $y_1 = -0.11x_0 + 0.27x_1 - 0.15x_2 + 0.27x_3 + 0.15x_4 + 0.51x_5 + 0.57x_6 + 0.23x_7 + 0.01x_8 - 0.04x_9 - 0.39x_{10}$

Importance of components

- Performing PCA gives us eigenvalue, eigenvector pairs $\{\lambda_d\}_{d=0}^{D-1}, \{\mathbf{w}_d\}_{d=0}^{D-1}$
- The eigenvectors are our principal components
- The eigenvalues are an importance weighting for each component

The first principal component explains

s
$$\frac{\lambda_0}{\sum_d \lambda_j}$$
 % of the variance of the data

Importance of components

Be careful throwing away dimensions if not enough variance is explained

Explaining variance of irises

1D: 73%

2D: 96%

3D: 99%

Explaining variance of wine

1D: 28%

2D: 45%

3D: 60%

Reconstructing a dataset

- $\mathbf{Y} = \mathbf{X}\mathbf{W}_d$ projects data from D dimensions to d dimensions
- Let's assume we can use $\mathbf{W}_d^ op$ to bring the projected data back up to D dims
- We can then define our **reconstructed dataset** as $\widetilde{\mathbf{X}} = \mathbf{Y}\mathbf{W}_d^{\mathsf{T}} = \mathbf{X}\mathbf{W}_d\mathbf{W}_d^{\mathsf{T}}$

Reconstruction error

- i.e. the (average) distance between them should be low
- Our points are $\{\mathbf{x}^{(n)}\}_{n=0}^{N-1}$ with reconstructions $\{\widetilde{\mathbf{x}}^{(n)}\}_{n=0}^{N-1}$

Reconstruction error

$$E_r = \frac{1}{N} \sum_n \|\mathbf{x}^{(n)} - \widetilde{\mathbf{x}}^{(n)}\| = \frac{1}{N} \sum_n \|\mathbf{x}^{(n)} - \mathbf{W}_d \mathbf{W}_d^{\mathsf{T}} \mathbf{x}^{(n)}\|$$

 $\mathbf{X}\mathbf{W}_{d}\mathbf{W}_{d}^{\mathsf{T}}$ for the dataset matrix means $\mathbf{W}_{d}\mathbf{W}_{d}^{\mathsf{T}}\mathbf{X}$ for each column vector data point

• For a good reconstruction, reconstructed points should be near the originals

Minimising reconstruction error

• We have a reconstruction error that we want to minimise

$$E_r = \frac{1}{N} \sum_n \|\mathbf{x}^{(n)} - \widetilde{\mathbf{x}}^{(n)}\| = \frac{1}{N} \sum_n \|\mathbf{x}^{(n)} - \mathbf{W}_d \mathbf{W}_d^{\mathsf{T}} \mathbf{x}^{(n)}\|$$

- \mathbf{W}_d does minimise this!
- PCA gives you the best possible matrix for making E_r as small as possible Minimising reconstruction error is equivalent to maximising variance

Proof: http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf p324

Limitations: PCA is susceptible to outliers

Outliers can change the direction of maximum variance

Limitations: PCA is linear

W

If the direction of maximum variance isn't a line, PCA can't find it

Clustering with K-means

Motivation

You have a dataset that you want to split into groups

- people with low, medium, high income for marketing
- grouping shoppers to recommend products
- identifying personality types for a dating website

K-means

- We can use K-means to automatically split our dataset in groups
- Other clustering algorithms are available!

ally split our dataset in groups

K-means algorithm

- Select the number of clusters K
- Initialise the cluster centres $\{\mathbf{c}_k\}_{k=0}^{K-1}$ at random
- Repeat:

 - 2. Update cluster centres as mean of their assigned points
- Until no change

1. Assign each standardised data point to its nearest cluster centre

Credit: Andrew Zisserman (for the slide idea, not the algorithm)

K-means walkthrough with K = 3

Initialise the cluster centres $\{\mathbf{c}_k\}_{k=0}^{K-1}$ at random

Assign each data point to its nearest cluster centre

K-means walkthrough with K = 3

Assign each data point to its nearest cluster centre Update cluster centres as mean of their assigned points

Warning

- K-means is very sensitive to where the initial cluster centres are placed
- The number of clusters is user defined
- The clusters might not be meaningful

This data is just noise!

Summary

- We have revised some linear algebra
- We have learnt how to preprocess data so it can be used for some algorithms
- We have seen how PCA can be used for dimensionality reduction
- We have been introduced to K-means and how it can cluster data