Data Analysis and Machine Learning 4

Week 3: Preprocessing, PCA, clustering

Elliot J. Crowley, 30th January 2023

Recap

- We reviewed summary statistics for datasets

- We considered different ways to visualise data

This week

- You will learn how to preprocess data so it can be used for various algorithms
- There will be some linear algebra revision
- You will learn about PCA and how it can be used for dimensionality reduction
- You will find out how to cluster data using the K-means algorithm

Preprocessing

Matrix inputs

- PCA and many machine learning (ML) methods require a matrix input
- Our dataset must be represented by a matrix of real continuous values
- Given tabular data, we need to convert it into such a matrix

	Height (cm)	Age	Favourite colour
$\mathbf{0}$	185	32	blue
$\mathbf{1}$	193	70	red
$\mathbf{2}$	147	77	brown
$\mathbf{3}$	163	26	blue

Representing a dataset as a matrix

- We have tabular data with N data items (rows) and C attributes (cols)
- For ease of exposition, we will drop attributes that don't correspond to continuous variables
- If there are now D attributes we can represent the dataset by a $N \times D$ matrix

Representing data points as vectors

- We are representing our dataset using a $N \times D$ dataset matrix \mathbf{X}
- Each row is a data item or data point that lives in D-dimensional space
- Let's denote these as $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(N-1)}$ or $\left\{\mathbf{x}^{(n)}\right\}_{n=0}^{N-1}$. They are vectors

Data points are column vectors

- It is standard with tabular data to have the rows as data points
- But in ML literature it is convention to denote all vectors including data points \mathbf{x} as column vectors
- It is also convention to represent a dataset as $\mathbf{X} \in \mathbb{R}^{N \times D}$ (in the same way we just did) where the rows are those data points
- Just be aware of this peculiarity!

$$
\mathbf{x}=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{D-1}
\end{array}\right] \quad \mathbf{x}^{(n)}=\left[\begin{array}{c}
x_{0}^{(n)} \\
x_{1}^{(n)} \\
\vdots \\
\vdots \\
x_{D-1}^{(n)}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
\mathbf{x}^{(0)^{\top}} \\
\mathbf{x}^{(1)^{\top}} \\
\mathbf{x}^{(2)^{\top}} \\
\vdots \\
\mathbf{x}^{(N-1)^{\top}}
\end{array}\right]=\left[\begin{array}{cccc}
x_{0}^{(0)} & x_{1}^{(0)} & \ldots & x_{D-1}^{(0)} \\
x_{0}^{(1)} & x_{1}^{(1)} & \ldots & x_{D-1}^{(1)} \\
x_{0}^{(2)} & x_{1}^{(2)} & \ldots & x_{D-1}^{(2)} \\
x_{0}^{(N-1)} & x_{1}^{(N-1)} & \ldots & x_{D}^{(N-1)}
\end{array}\right]
$$

Why vectors?

- We can now use the machinery of linear algebra for PCA and ML
- Matrices linearly transform vectors
- Computers are very good at matrix multiplication
- Neural networks consist of multiple matrices (See Week 9!)

Can we represent other types of data as vectors?

- Yes! We can flatten or vectorise images

- We can represent text data as a histogram of word counts (a bag of words) e.g. [\# "l", \# "like", \# "sausage", \# "hate"]

I like sausage
I hate sausage
sausage sausage

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right]^{\top}
$$

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right]^{\top}
$$

$$
\left[\begin{array}{llll}
0 & 0 & 2 & 0
\end{array}\right]^{\top}
$$

Standardising your data

- Measurements of different variables can have vastly different scales
- We want to compare variables like-for-like and not let those with large values dominate
- The solution is to standardise your data
- We want each column of \mathbf{X} to have a mean of 0 and a SD of 1

	Height (cm)	Age	Salary (£)
$\mathbf{0}$	190	44	25000
$\mathbf{1}$	143	36	29000
$\mathbf{2}$	152	20	100000
$\mathbf{3}$	178	56	67000

143 \& 36 \& 29000

152 \& 20 \& 100000

178 \& 56 \& 67000\end{array}\right] ? ?\)

Standardising your data

- We want each column of \mathbf{X} to have a mean of 0 and a SD of 1
- For each column, compute the mean and SD
- Then subtract the mean from each value and divide by SD

I will use \sum_{n} to mean
"sum over all n "

- This is essential for PCA and many ML algorithms

$$
\begin{aligned}
& \begin{array}{l}
\mu_{j}=\frac{1}{N} \sum_{n} \mathbf{X}_{j}^{(n)} \\
\sigma_{j}^{2}=\frac{1}{N} \sum_{n}\left(\mathbf{X}_{j}^{(n)}-\mu_{j}\right)^{2}
\end{array} \\
& \mathbf{X}_{n e w}=\left[\begin{array}{cccc}
\frac{x_{0}^{(0)}-\mu_{0}}{\sigma_{0}} & \frac{x_{1}^{(0)}-\mu_{1}}{\sigma_{1}} & \ldots & \frac{x_{D-1}^{(0)}-\mu_{N-1}}{\sigma_{N-1}} \\
\frac{x_{0}^{(1)}-\mu_{0}}{\sigma_{0}} & \frac{x_{1}^{(1)}-\mu_{1}}{\sigma_{1}} & \cdots & \frac{x_{D-1}^{(1)}-\mu_{N-1}}{\sigma_{N-1}} \\
\cdots & \ldots & \ddots & \vdots \\
\frac{x_{0}^{(N-1)}-\mu_{0}}{\sigma_{0}} & \frac{x_{1}^{(N-1)}-\mu_{1}}{\sigma_{1}} & \cdots & \frac{x_{D-1}^{(N-1)}-\mu_{N-1}}{\sigma_{N-1}}
\end{array}\right]
\end{aligned}
$$

Normalising vs. standardising

- Nomenclature can vary but in this course standardising refers to scaling each variable to zero mean and unit variance
- We can do other forms of scaling e.g. divide each variable by its maximum value
- We will refer to other forms of scaling as normalising
- Generally, anything that gets different variables to similar ranges is fine just make sure you do it!

Transformation matrices (Linear algebra revision)

Using a matrix to transform a vector

- Assume we have a data point $\mathbf{x} \in \mathbb{R}^{D_{1}}$ and a matrix $\mathbf{A} \in \mathbb{R}^{D_{2} \times D_{1}}$
- If we multiply \mathbf{A}^{\top} by \mathbf{x} then we get a transformed data point $\mathbf{y} \in \mathbb{R}^{D_{2}}$

$$
\mathbf{y}=\mathbf{A}^{\top} \mathbf{x}
$$

Using a matrix to transform multiple vectors

- If we want do this to multiple data points $\left\{\mathbf{x}^{(n)}\right\}_{n=0}^{N-1}$ then we can transpose each, and then post-multiply by \mathbf{A}
- This gives us the transposes of transformed data points $\left\{\mathbf{y}^{(n)}\right\}_{n=0}^{N-1}$

Matrix multiplication

- We want to transform all our $\left\{\mathbf{x}^{(n)}\right\}_{n=0}^{N-1}$ into $\left\{\mathbf{y}^{(n)}\right\}_{n=0}^{N-1}$ in parallel
- We can form a dataset matrix $\mathbf{X} \in \mathbb{R}^{N \times D_{1}}$ and post-multiply by \mathbf{A}
- This gives us a transformed dataset matrix $\mathbf{Y} \in \mathbb{R}^{N \times D_{2}}$ whose rows are transformed data points

Changing dimensionality

- $\mathbf{Y}=\mathbf{X A}$ transforms the vectors $\left\{\mathbf{x}^{(n)}\right\}_{n=0}^{N-1}$ into $\left\{\mathbf{y}^{(n)}\right\}_{n=0}^{N-1}$
- Recall that $\mathbf{A} \in \mathbb{R}^{D_{2} \times D_{1}}, \mathbf{x} \in \mathbb{R}^{D_{1}}, \mathbf{y} \in \mathbb{R}^{D_{2}}$
- D_{1} is fixed but D_{2} can vary

$$
D_{2}=D_{1}
$$

A square
Dimensionality of each \mathbf{x} stays the same

$$
D_{2}>D_{1}
$$

A wide
Dimensionality of each \mathbf{x} goes up

$D_{2}<D_{1}$
A thin
Dimensionality of each \mathbf{x} goes down

Mapping in the same space

- Consider a dataset $\mathbf{X} \in \mathbb{R}^{20 \times 2}$ that consists of 2D points on a circle
- If $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ then $\mathbf{X A}$ maps each point to a new point within 2D space
- These new points are the rows of $\mathbf{Y} \in \mathbb{R}^{20 \times 2}$ where $\mathbf{Y}=\mathbf{X A}$

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 0 \\
0 & 0.5
\end{array}\right]
$$

x_{0} and x_{1} are the dimensions of \mathbf{x} and so on

$Y=X A$ causes a change of basis

- New dimensions are linear combinations of old dimensions
- The columns of \mathbf{A} are basis vectors

$$
\left[\begin{array}{ll}
y_{0} & y_{1}
\end{array}\right]=\left[\begin{array}{ll}
x_{0} & x_{1}
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array} \begin{array}{c}
0 \\
0.5
\end{array}\right]
$$

$$
\begin{aligned}
& y_{0}=2 x_{0} \\
& y_{1}=0.5 x_{1}
\end{aligned}
$$

Orthogonality and orthonormality

- If the dot product of the basis vectors is 0 then they form an orthogonal basis
- If they are also unit norm then we call this an orthonormal basis

$$
\begin{array}{ll}
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{a}_{0} & \mathbf{a}_{1}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 0.5
\end{array}\right] & \mathbf{A}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
\mathbf{a}_{0} \cdot \mathbf{a}_{1}=2 \times 0+0 \times 0.5=0 & \mathbf{a}_{0} \cdot \mathbf{a}_{1}=0 \\
\left\|\mathbf{a}_{0}\right\|=\sqrt{2^{2}+0^{2}}=2 & \left\|\mathbf{a}_{0}\right\|=1 \\
\left\|\mathbf{a}_{1}\right\|=\sqrt{0^{2}+0.5^{2}}=0.5 & \left\|\mathbf{a}_{1}\right\|=1
\end{array}
$$

Invertibility

- A matrix \mathbf{A} that forms an orthonormal basis is called an orthonormal matrix
- These are invertible which means no information is lost
- Their inverse is also their transpose i.e. $\mathbf{A}^{-1}=\mathbf{A}^{\top}$

Mapping in the same space ... in 3D!

- Consider a dataset $\mathbf{X} \in \mathbb{R}^{625 \times 3}$ that consists of points on a sphere
- We can use a rotation matrix to rotate these points around an axis
- This is mapping each point to a new position within this 3D space

Change of basis

We have $\mathbf{Y}=\mathbf{X A}$ and for 90 degrees $\mathbf{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& y_{0}=x_{0} \\
& y_{1}=-y_{2} \\
& y_{2}=x_{1}
\end{aligned}
$$

Dimensionality reduction

- If $\mathbf{A} \in \mathbb{R}^{3 \times 2}$ then $\mathbf{X A}$ maps each 3D point to a 2D point
- This throws away information

Dimensionality reduction

If $\mathbf{A} \in \mathbb{R}^{3 \times 2}$ then $\mathbf{X A}$ maps each 3D point to a 2D point
$\mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & 2\end{array}\right]$
$y_{0}=x_{0}+x_{1}+x_{2}$

$$
y_{1}=x_{0}-x_{1}+2 x_{2}
$$

Principal Component Analysis (PCA)

Motivation for PCA

- Most data is high dimensional
- This makes it hard to visualise patterns across a whole dataset

Tables with >3 columns

Images with millions of pixels
Time series with thousands of points

Motivation for PCA

- We could use a transform to reduce the dimensionality of our data e.g. to 2D
- Then we could simply look at a scatter plot to find patterns
- But how do we know what the best transform is? (Spoilers: it involves PCA)

Principal Component Analysis (PCA)

- Consider a standardised dataset matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$
- PCA takes \mathbf{X} and returns an orthonormal matrix $\mathbf{W} \in \mathbb{R}^{D \times D}$
- We can then transform \mathbf{X} using $\mathbf{Y}=\mathbf{X W}$
- The new dimensions y_{0}, y_{1}, \ldots are linear combinations of the old dimensions x_{0}, x_{1}, \ldots

$?$

Maximum variance

- The data is transformed so there is as much variance as possible in y_{0}
- y_{0} best explains the data in 1D

Arranging dimensions by decreasing variance

- There is the most variance in y_{0} and there is the next most variance in y_{1}
- y_{0} and y_{1} best explain the data in 2D
- And so on!

Computing principal components

For a standardised dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$, PCA gives you a matrix $\mathbf{W} \in \mathbb{R}^{D \times D}$
The columns of $\mathbf{W}:\left\{\mathbf{w}_{d}\right\}_{d=0}^{D-1}$ are the principal components of the data
To compute these:

1. Construct the covariance matrix $\boldsymbol{\Sigma}=\frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$
2. Eigendecompose $\boldsymbol{\Sigma}$ to eigenvalue, eigenvector pairs
3. Sort pairs by decreasing eigenvalue and denote as $\left\{\lambda_{d}\right\}_{d=0}^{D-1},\left\{\mathbf{w}_{d}\right\}_{d=0}^{D-1}$

PCA for dimensionality reduction

- PCA gives us $\mathbf{W} \in \mathbb{R}^{D \times D}$ where $\mathbf{W}=\left[\begin{array}{llll}\mathbf{w}_{0} & \mathbf{w}_{1} & \ldots & \mathbf{w}_{D-1}\end{array}\right]$
- To reduce to $d<D$ dimensions we can just keep the first d columns
- e.g. $\mathbf{W}_{d=2}=\left[\begin{array}{ll}\mathbf{w}_{0} & \mathbf{w}_{1}\end{array}\right]$ would take our data to 2D using $\mathbf{Y}=\mathbf{X} \mathbf{W}_{d=2}$

PCA for dimensionality reduction on irises

- The iris dataset contains 150 data points
- Let's take the numeric columns to form a dataset matrix $\mathbf{X} \in \mathbb{R}^{150 \times 4}$
- Make sure that \mathbf{X} is standardised

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
$\mathbf{0}$	5.1	3.5	1.4	0.2	setosa
$\mathbf{1}$	4.9	3.0	1.4	0.2	setosa
$\mathbf{2}$	4.7	3.2	1.3	0.2	setosa
$\mathbf{3}$	4.6	3.1	1.5	0.2	setosa
$\mathbf{4}$	5.0	3.6	1.4	0.2	setosa
\ldots	\ldots	\ldots	\ldots	\ldots	
$\mathbf{1 4 5}$	6.7	3.0	\ldots	2.3	virginica
$\mathbf{1 4 6}$	6.3	2.5	5.0	1.9	virginica
$\mathbf{1 4 7}$	6.5	3.0	5.2	2.0	virginica
$\mathbf{1 4 8}$	6.2	3.0	5.4	2.3	virginica
$\mathbf{1 4 9}$	5.9		1.8	virginica	

$\left[\begin{array}{cccc}5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \\ 4.6 & 3.1 & 1.5 & 0.2 \\ 5.0 & 3.6 & 1.4 & 0.2 \\ \cdots & \ldots & . & . . \\ 0.7 & 3.0 & 5.2 & 2.3 \\ 6.3 & 2.5 & 5.0 & 1.9 \\ 6.5 & 3.0 & 5.2 & 2.0 \\ 6.2 & 3.4 & 5.4 & 2.3 \\ 5.9 & 3.0 & 5.1 & 1.8\end{array}\right] \quad\left[\begin{array}{cccc}5.1 & 3.5 & 1.4 & 0.2 \\ 0.9 & 1.0 & -1.3 & -1.3 \\ -1.1 & -0.1 & -1.3 & -1.3 \\ -1.4 & 0.3 & -1.4 & -1.3 \\ -1.5 & 0.1 & -1.3 & -1.3 \\ -1.0 & 1.2 & -1.3 & -1.3 \\ \ldots & \cdots & . . & \ldots \\ .0 & -0.1 & 0.8 & 1.4 \\ 0.6 & -1.3 & 0.7 & 0.9 \\ 0.8 & -0.1 & 0.8 & 1.1 \\ 0.4 & 0.8 & 0.9 & 1.4 \\ 0.1 & -0.1 & 0.8 & 0.8\end{array}\right]$

PCA for dimensionality reduction on irises

- Use PCA to form $\mathbf{W} \in \mathbb{R}^{4 \times 4}$
- Now use $\mathbf{Y}=\mathbf{X}\left[\begin{array}{ll}\mathbf{w}_{0} & \mathbf{w}_{1}\end{array}\right]$ to project down to 2D
- Different species are distinguishable just by looking at y_{0}
- These new dimensions were found automatically

$$
\begin{aligned}
& y_{0}=-0.52 x_{0}-0.27 x_{1}-0.58 x_{2}+0.56 x_{3} \\
& y_{1}=-0.38 x_{0}+0.92 x_{1}+0.02 x_{2}+0.07 x_{3}
\end{aligned}
$$

PCA for dimensionality reduction on wine

- We have a red wine dataset $\mathbf{X} \in \mathbb{R}^{1599 \times 11}$
- Each wine has also been scored by an expert between 0 and 10
- We can look at a few examples but it's hard to get the full picture

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
...	\cdots
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

PCA for dimensionality reduction on wine

- Let's standardise our data, and then use PCA to form $\mathbf{W} \in \mathbb{R}^{11 \times 11}$
- Now use $\mathbf{Y}=\mathbf{X}\left[\begin{array}{ll}\mathbf{w}_{0} & \mathbf{w}_{1}\end{array}\right]$ to project down to 2D

PCA for dimensionality reduction on wine

- We can see in this space that good wines tend to be near the bottom
- What makes a good wine? A negative y_{1} of course!

Good wine recipe - make y_{1} negative

- The new dimensions are just linear combinations of the original dimensions

$$
y_{1}=-0.11 x_{0}+0.27 x_{1}-0.15 x_{2}+0.27 x_{3}+0.15 x_{4}+0.51 x_{5}+0.57 x_{6}+0.23 x_{7}+0.01 x_{8}-0.04 x_{9}-0.39 x_{10}
$$

- In a lot of cases the new dimensions aren't very intuitive
- PCA is best used for exploratory data analysis

Importance of components

- Performing PCA gives us eigenvalue, eigenvector pairs $\left\{\lambda_{d}\right\}_{d=0}^{D-1},\left\{\mathbf{w}_{d}\right\}_{d=0}^{D-1}$
- The eigenvectors are our principal components
- The eigenvalues are an importance weighting for each component

The first principal component explains $\frac{\lambda_{0}}{\sum_{d} \lambda_{j}} \%$ of the variance of the data

Importance of components

The first principal component explains $\frac{\lambda_{0}}{\sum_{d} \lambda_{j}} \%$ of the variance
It follows that the first M principal components account for $\frac{\sum_{d=0}^{M-1} \lambda_{j}}{\sum_{d} \lambda_{j}} \%$

Be careful throwing away dimensions if not enough variance is explained

Explaining variance of irises

2D: 96\%

3D: 99\%

Explaining variance of wine

Reconstructing a dataset

- $\mathbf{Y}=\mathbf{X W}_{d}$ projects data from D dimensions to d dimensions
- Let's assume we can use \mathbf{W}_{d}^{\top} to bring the projected data back up to D dims
- We can then define our reconstructed dataset as $\widetilde{\mathbf{X}}=\mathbf{Y} \mathbf{W}_{d}^{\top}=\mathbf{X} \mathbf{W}_{d} \mathbf{W}_{d}^{\top}$

Reconstruction error

- For a good reconstruction, reconstructed points should be near the originals
- i.e. the (average) distance between them should be low
- Our points are $\left\{\mathbf{x}^{(n)}\right\}_{n=0}^{N-1}$ with reconstructions $\left\{\widetilde{\mathbf{x}}^{(n)}\right\}_{n=0}^{N-1}$

Reconstruction error

$$
E_{r}=\frac{1}{N} \sum_{n}\left\|\mathbf{x}^{(n)}-\widetilde{\mathbf{x}}^{(n)}\right\|=\frac{1}{N} \sum_{n}\left\|\mathbf{x}^{(n)}-\mathbf{W}_{d} \mathbf{W}_{d}^{\top} \mathbf{x}^{(n)}\right\|
$$

Minimising reconstruction error

- We have a reconstruction error that we want to minimise

$$
E_{r}=\frac{1}{N} \sum_{n}\left\|\mathbf{x}^{(n)}-\widetilde{\mathbf{x}}^{(n)}\right\|=\frac{1}{N} \sum_{n}\left\|\mathbf{x}^{(n)}-\mathbf{W}_{d} \mathbf{W}_{d}^{\top} \mathbf{x}^{(n)}\right\|
$$

- \mathbf{W}_{d} does minimise this!
- PCA gives you the best possible matrix for making E_{r} as small as possible
- Minimising reconstruction error is equivalent to maximising variance

Limitations: PCA is susceptible to outliers

Outliers can change the direction of maximum variance

Limitations: PCA is linear

If the direction of maximum variance isn't a line, PCA can't find it

Clustering with K-means

Motivation

You have a dataset that you want to split into groups

- people with low, medium, high income for marketing
- grouping shoppers to recommend products
- identifying personality types for a dating website

K-means

- We can use K-means to automatically split our dataset in groups
- Other clustering algorithms are available!

K-means algorithm

- Select the number of clusters K
- Initialise the cluster centres $\left\{\mathbf{c}_{k}\right\}_{k=0}^{K-1}$ at random
- Repeat:

1. Assign each standardised data point to its nearest cluster centre
2. Update cluster centres as mean of their assigned points

- Until no change

K-means walkthrough with $K=3$

Initialise the cluster centres $\left\{\mathbf{c}_{k}\right\}_{k=0}^{K-1}$ at random

Assign each data point to its nearest cluster centre

K-means walkthrough with $K=3$

Update cluster centres as mean of their assigned points Assign each data point to its nearest cluster centre

Warning

- K-means is very sensitive to where the initial cluster centres are placed
- The number of clusters is user defined
- The clusters might not be meaningful

This data is just noise!

Summary

- We have revised some linear algebra
- We have learnt how to preprocess data so it can be used for some algorithms
- We have seen how PCA can be used for dimensionality reduction
- We have been introduced to K-means and how it can cluster data

