
Elliot J. Crowley, 30th January 2023

Data Analysis and Machine
Learning 4
Week 3: Preprocessing, PCA, clustering

Recap

• We reviewed summary statistics for datasets

• We considered different ways to visualise data

This week

• You will learn how to preprocess data so it can be used for various algorithms

• There will be some linear algebra revision

• You will learn about PCA and how it can be used for dimensionality reduction

• You will find out how to cluster data using the K-means algorithm

Preprocessing

Matrix inputs

• PCA and many machine learning (ML) methods require a matrix input

• Our dataset must be represented by a matrix of real continuous values

• Given tabular data, we need to convert it into such a matrix

?

Representing a dataset as a matrix

• We have tabular data with data items (rows) and attributes (cols)

• For ease of exposition, we will drop attributes that don’t correspond to
continuous variables

• If there are now attributes we can represent the dataset by a matrix

N C

D N × D

X =

185 32
193 70
147 77
163 26

X ∈ ℝN×D

Representing data points as vectors

• We are representing our dataset using a dataset matrix

• Each row is a data item or data point that lives in -dimensional space

• Let’s denote these as or . They are vectors

N × D X

D

x(0), x(1), x(2), …, x(N−1) {x(n)}N−1
n=0

X =

185 32
193 70
147 77
163 26

X ∈ ℝN×D x ∈ ℝD

x(0)

x(1)x(2)

x(3)

Credit to Iain Murray for the notation

Data points are column vectors

• It is standard with tabular data to have the rows as data points

• But in ML literature it is convention to denote all vectors including data points
 as column vectors

• It is also convention to represent a dataset as (in the same way
we just did) where the rows are those data points

• Just be aware of this peculiarity!

x

X ∈ ℝN×D

X =

x(0)⊤

x(1)⊤

x(2)⊤

⋮
x(N−1)⊤

=

x(0)
0 x(0)

1 … x(0)
D−1

x(1)
0 x(1)

1 … x(1)
D−1

x(2)
0 x(2)

1 … x(2)
D−1

… … ⋱ ⋮
x(N−1)

0 x(N−1)
1 … x(N−1)

D−1

x(n) =

x(n)
0

x(n)
1
⋮

x(n)
D−1

x =

x0
x1
⋮

xD−1

Why vectors?

• We can now use the machinery of linear algebra for PCA and ML

• Matrices linearly transform vectors

• Computers are very good at matrix multiplication

• Neural networks consist of multiple matrices (See Week 9!)

Can we represent other types of data as vectors?

• Yes! We can flatten or vectorise images

• We can represent text data as a histogram of word counts (a bag of words) 
e.g. [# “I”, # “like”, # “sausage”, # “hate”]

[]⊤

⊤

I like sausage sausage sausageI hate sausage

[1 1 1 0]⊤ [1 0 1 1]⊤ [0 0 2 0]⊤

[]

Standardising your data

• Measurements of different variables can have vastly different scales

• We want to compare variables like-for-like and not let those with large values
dominate

• The solution is to standardise your data

• We want each column of to have a mean of 0 and a SD of 1 X

X =

190 44 25000
143 36 29000
152 20 100000
178 56 67000

?

Standardising your data

• We want each column of to have a mean of 0 and a SD of 1

• For each column, compute the mean and SD

• Then subtract the mean from each value and divide by SD

• This is essential for PCA and many ML algorithms

X

μj =
1
N ∑

n

x(n)
j

σ2
j =

1
N ∑

n

(x(n)
j − μj)2

Xnew =

x (0)
0 − μ0

σ0

x(0)
1 − μ1

σ1
…

x(0)
D−1 − μN−1

σN−1

x (1)
0 − μ0

σ0

x(1)
1 − μ1

σ1
…

x(1)
D−1 − μN−1

σN−1

… … ⋱ ⋮
x (N−1)

0 − μ0

σ0

x(N−1)
1 − μ1

σ1
…

x(N−1)
D−1 − μN−1

σN−1

Xold =

x(0)
0 x(0)

1 … x(0)
D−1

x(1)
0 x(1)

1 … x(1)
D−1

… … ⋱ ⋮
x(N−1)

0 x(N−1)
1 … x(N−1)

D−1

I will use to mean

“sum over all ”

∑
n

n

Normalising vs. standardising

• Nomenclature can vary but in this course standardising refers to scaling
each variable to zero mean and unit variance

• We can do other forms of scaling e.g. divide each variable by its maximum
value

• We will refer to other forms of scaling as normalising

• Generally, anything that gets different variables to similar ranges is fine just
make sure you do it!

Transformation matrices

(Linear algebra revision)

Using a matrix to transform a vector

• Assume we have a data point and a matrix

• If we multiply by then we get a transformed data point

x ∈ ℝD1 A ∈ ℝD2×D1

A⊤ x y ∈ ℝD2

xy A⊤=D2

D1

D1D2

y = A⊤x

Using a matrix to transform multiple vectors

• If we want do this to multiple data points then we can transpose
each, and then post-multiply by

• This gives us the transposes of transformed data points

{x(n)}N−1
n=0

A

{y(n)}N−1
n=0

x(1)⊤y(1)⊤
A= D1

D2

x(0)⊤

x(N−1)⊤

y(0)⊤

y(N−1)⊤

⋮ ⋮

D2 D1
y⊤ = x⊤A

Matrix multiplication

• We want to transform all our into in parallel

• We can form a dataset matrix and post-multiply by

• This gives us a transformed dataset matrix whose rows are
transformed data points

{x(n)}N−1
n=0 {y(n)}N−1

n=0

X ∈ ℝN×D1 A

Y ∈ ℝN×D2

=

D1

D2D1

AY

D2

X

N N

Y = XA

Changing dimensionality

• transforms the vectors into

• Recall that , ,

• is fixed but can vary

Y = XA {x(n)}N−1
n=0 {y(n)}N−1

n=0

A ∈ ℝD2×D1 x ∈ ℝD1 y ∈ ℝD2

D1 D2

A A A

 square

Dimensionality of each stays the same

D2 = D1
A

x

 wide

Dimensionality of each goes up

D2 > D1
A

x

 thin

Dimensionality of each goes down

D2 < D1
A

x

Mapping in the same space

• Consider a dataset that consists of 2D points on a circle

• If then maps each point to a new point within 2D space

• These new points are the rows of where

X ∈ ℝ20×2

A ∈ ℝ2×2 XA

Y ∈ ℝ20×2 Y = XA

A = [2 0
0 0.5] A

 and are the dimensions of and so onx0 x1 x

• New dimensions are linear combinations of old dimensions

• The columns of are basis vectorsA

 causes a change of basisY = XA

[y0 y1] = [x0 x1] [2 0
0 0.5]

y0 = 2x0

y1 = 0.5x1 A

• If the dot product of the basis vectors is 0 then they form an orthogonal basis

• If they are also unit norm then we call this an orthonormal basis

Orthogonality and orthonormality

A = [a0 a1] = [2 0
0 0.5]

a0 ⋅ a1 = 2 × 0 + 0 × 0.5 = 0

∥a0∥ = 22 + 02 = 2

∥a1∥ = 02 + 0.52 = 0.5
Orthogonal

A =

1

2

1

2

− 1

2

1

2

Orthonormal

a0 ⋅ a1 = 0

∥a0∥ = 1

∥a1∥ = 1

• A matrix that forms an orthonormal basis is called an orthonormal matrix

• These are invertible which means no information is lost

• Their inverse is also their transpose i.e.

A

A−1 = A⊤

Invertibility

A⊤A

Mapping in the same space … in 3D!

• Consider a dataset that consists of points on a sphere

• We can use a rotation matrix to rotate these points around an axis

• This is mapping each point to a new position within this 3D space

X ∈ ℝ625×3

A =
1 0 0
0 cos θ −sin θ
0 sin θ cos θ

A

Change of basis

We have and for 90 degrees
Y = XA A = [
1 0 0
0 0 −1
0 1 0]

y0 = x0

y1 = − y2

y2 = x1

A

• If then maps each 3D point to a 2D point

• This throws away information

A ∈ ℝ3×2 XA

Dimensionality reduction

y0 = x0

y1 = x1

A = [
1 0
0 1
0 0] A

If then maps each 3D point to a 2D pointA ∈ ℝ3×2 XA

Dimensionality reduction

y0 = x0 + x1 + x2

y1 = x0 − x1 + 2x2

A = [
1 1
1 −1
1 2]

A

Principal Component Analysis
(PCA)

Motivation for PCA

• Most data is high dimensional

• This makes it hard to visualise patterns across a whole dataset

Tables with >3 columns

Time series with thousands of points

Images with millions of pixels

Motivation for PCA
• We could use a transform to reduce the dimensionality of our data e.g. to 2D

• Then we could simply look at a scatter plot to find patterns

• But how do we know what the best transform is? (Spoilers: it involves PCA)

Principal Component Analysis (PCA)

• Consider a standardised dataset matrix

• PCA takes and returns an orthonormal matrix

• We can then transform using

• The new dimensions are linear combinations of the old dimensions

X ∈ ℝN×D

X W ∈ ℝD×D

X Y = XW

y0, y1, …
x0, x1, …

W ?

• The data is transformed so there is as much variance as possible in

• best explains the data in 1D

y0

y0

Maximum variance

W

Arranging dimensions by decreasing variance

• There is the most variance in and there is the next most variance in

• and best explain the data in 2D

• And so on!

y0 y1

y0 y1

W

Computing principal components

For a standardised dataset , PCA gives you a matrix

The columns of : are the principal components of the data

To compute these:

1. Construct the covariance matrix

2. Eigendecompose to eigenvalue, eigenvector pairs

3. Sort pairs by decreasing eigenvalue and denote as ,

X ∈ ℝN×D W ∈ ℝD×D

W {wd}D−1
d=0

Σ =
1
N

X⊤X

Σ

{λd}D−1
d=0 {wd}D−1

d=0

These vectors are

the principal components

PCA for dimensionality reduction

• PCA gives us where

• To reduce to dimensions we can just keep the first columns

• e.g. would take our data to 2D using

W ∈ ℝD×D W = [w0 w1 … wD−1]

d < D d

Wd=2 = [w0 w1] Y = XWd=2

Wd=2

PCA for dimensionality reduction on irises

• The iris dataset contains 150 data points

• Let’s take the numeric columns to form a dataset matrix

• Make sure that is standardised

X ∈ ℝ150×4

X
5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2… … … …
0.7 3.0 5.2 2.3
6.3 2.5 5.0 1.9
6.5 3.0 5.2 2.0
6.2 3.4 5.4 2.3
5.9 3.0 5.1 1.8

5.1 3.5 1.4 0.2
0.9 1.0 −1.3 −1.3

−1.1 −0.1 −1.3 −1.3
−1.4 0.3 −1.4 −1.3
−1.5 0.1 −1.3 −1.3
−1.0 1.2 −1.3 −1.3… … … …

.0 −0.1 0.8 1.4
0.6 −1.3 0.7 0.9
0.8 −0.1 0.8 1.1
0.4 0.8 0.9 1.4
0.1 −0.1 0.8 0.8

PCA for dimensionality reduction on irises

• Use PCA to form

• Now use to project down to 2D

• Different species are distinguishable just by looking at

• These new dimensions were found automatically

W ∈ ℝ4×4

Y = X [w0 w1]

y0

y0 = − 0.52x0 − 0.27x1 − 0.58x2 + 0.56x3

y1 = − 0.38x0 + 0.92x1 + 0.02x2 + 0.07x3

PCA for dimensionality reduction on wine

• We have a red wine dataset

• Each wine has also been scored by an expert between 0 and 10

• We can look at a few examples but it’s hard to get the full picture

X ∈ ℝ1599×11

PCA for dimensionality reduction on wine

• Let’s standardise our data, and then use PCA to form

• Now use to project down to 2D

W ∈ ℝ11×11

Y = X [w0 w1]

PCA for dimensionality reduction on wine

• We can see in this space that good wines tend to be near the bottom

• What makes a good wine? A negative of course!y1

Good wine recipe - make negative y1

• The new dimensions are just linear combinations of the original dimensions

• In a lot of cases the new dimensions aren’t very intuitive

• PCA is best used for exploratory data analysis

y1 = − 0.11x0 + 0.27x1 − 0.15x2 + 0.27x3 + 0.15x4 + 0.51x5 + 0.57x6 + 0.23x7 + 0.01x8 − 0.04x9 − 0.39x10

Importance of components

• Performing PCA gives us eigenvalue, eigenvector pairs ,

• The eigenvectors are our principal components

• The eigenvalues are an importance weighting for each component

The first principal component explains % of the variance of the data

{λd}D−1
d=0 {wd}D−1

d=0

λ0

∑d λj

Importance of components

The first principal component explains % of the variance

It follows that the first principal components account for %

Be careful throwing away dimensions if not enough variance is explained

λ0

∑d λj

M
∑M−1

d=0 λj

∑d λj

Explaining variance of irises

1D: 73% 2D: 96% 3D: 99%

Explaining variance of wine

1D: 28% 2D: 45% 3D: 60%

Reconstructing a dataset

• projects data from dimensions to dimensions

• Let’s assume we can use to bring the projected data back up to dims

• We can then define our reconstructed dataset as

Y = XWd D d

W⊤
d D

X̃ = YW⊤
d = XWdW⊤

d

Wd=1 W⊤
d=1

Reconstruction error

• For a good reconstruction, reconstructed points should be near the originals

• i.e. the (average) distance between them should be low

• Our points are with reconstructions
{x(n)}N−1
n=0 {x̃(n)}N−1

n=0

Er =
1
N ∑

n

∥x(n) − x̃(n)∥ =
1
N ∑

n

∥x(n) − WdW⊤
d x(n)∥

Reconstruction error

 for the dataset matrix means
for each column vector data point

XWdW⊤
d WdW⊤

d x

Minimising reconstruction error

• We have a reconstruction error that we want to minimise

• does minimise this!

• PCA gives you the best possible matrix for making as small as possible

• Minimising reconstruction error is equivalent to maximising variance

Wd

Er

Er =
1
N ∑

n

∥x(n) − x̃(n)∥ =
1
N ∑

n

∥x(n) − WdW⊤
d x(n)∥

Proof: http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf p324

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf

Limitations: PCA is susceptible to outliers
Outliers can change the direction of maximum variance

W

Limitations: PCA is linear
If the direction of maximum variance isn’t a line, PCA can’t find it

W

Clustering with K-means

Motivation
You have a dataset that you want to split into groups

- people with low, medium, high income for marketing

- grouping shoppers to recommend products

- identifying personality types for a dating website

K-means

• We can use K-means to automatically split our dataset in groups

• Other clustering algorithms are available!

K-means algorithm

• Select the number of clusters

• Initialise the cluster centres at random

• Repeat:

1. Assign each standardised data point to its nearest cluster centre

2. Update cluster centres as mean of their assigned points

• Until no change

K

{ck}K−1
k=0

Credit: Andrew Zisserman (for the slide idea, not the algorithm)

K-means walkthrough with K = 3

Initialise the cluster centres at random{ck}K−1
k=0 Assign each data point to its nearest cluster centre

K-means walkthrough with K = 3

Update cluster centres as mean of their assigned points Assign each data point to its nearest cluster centre

And so on!

Warning

• K-means is very sensitive to where the initial cluster centres are placed

• The number of clusters is user defined

• The clusters might not be meaningful

This data is just noise!

Summary

• We have revised some linear algebra

• We have learnt how to preprocess data so it can be used for some algorithms

• We have seen how PCA can be used for dimensionality reduction

• We have been introduced to K-means and how it can cluster data

