Data Analysis and Machine Learning 4

Week 5: Linear Regression

Elliot J. Crowley, 13th February 2023

Recap

- We learned about supervised learning and looked at some examples

- We considered ethical issues that can arise when applying ML in society

Cambridge Analytica

Supervised Learning

- We want a model that takes in a new data point and outputs a prediction

- For the model to be accurate it must first learn from training data
- Often, models are parameterised functions and learning = finding the best parameters
- Training data is a set of existing data points that have been labelled
- The label says what the prediction for that data point should be

Two canonical problems in supervised learning

- Regression: Given input data, predict a continuous output

- Classification: Given input data, predict a distinct category

Linear Regression

The regression problem

- Our training set consists of N data point-target pairs $\left\{\mathbf{x}^{(n)}, y^{(n)}\right\}_{n=0}^{N-1}$
- Data points $\mathbf{x} \in \mathbb{R}^{D}$ are column vectors, targets (/labels) $y \in \mathbb{R}^{1}$ are scalar
- We can use matrix/vector notation as in Week 3

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}^{(0)^{\top}} \\
\mathbf{x}^{(1)^{\top}} \\
\mathbf{x}^{(2)^{\top}} \\
\vdots \\
\mathbf{x}^{(N-1)^{\top}}
\end{array}\right]=\left[\begin{array}{cccc}
x_{0}^{(0)} & x_{1}^{(0)} & \ldots & x_{D-1}^{(0)} \\
x_{0}^{(1)} & x_{1}^{(1)} & \ldots & x_{D-1}^{(1)} \\
x_{0}^{(2)} & x_{1}^{(2)} & \ldots & x_{D-1}^{(2)} \\
\ldots & \ldots & \ddots & \vdots \\
x_{0}^{(N-1)} & x_{1}^{(N-1)} & \ldots & x_{D-1}^{(N-1)}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y^{(0)} \\
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N-1)}
\end{array}\right]
$$

- Objective: We want some function f such that $f\left(\mathbf{x}^{(n)}\right)=y^{(n)}$ for each training point. This function is our regression model

Simple linear regression

- We have 1D measurements of mass-extension pairs $\left\{x^{(n)}, y^{(n)}\right\}_{n=0}^{N-1}$
- We want a regression model represented by f s.t. $f\left(x^{(n)}\right)=y^{(n)}$ for each point
- Let's use a function that is linear in x and denote its outputs as \hat{y}

$$
f(x)=\hat{y}=w x+b
$$

w and b are the parameters of the model
w is called the weight and b is called the bias

Our function predicts the targets

- $\hat{y}^{(0)}, \hat{y}^{(1)}, \ldots, \hat{y}^{(N-1)}$ are predictions of our targets $y^{(0)}, y^{(1)}, \ldots, y^{(N-1)}$
- We wanted a model f such that $\hat{y}^{(n)}=y^{(n)}$ for each point
- But we can't achieve this: a line can't perfectly fit the data here
- Can we relax our objective?

$$
f(x)=\hat{y}=w x+b
$$

The squared error loss function

- Let's instead minimise the square distance between every $\hat{y}^{(n)}$ and $y^{(n)}$: $\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}$
- In ML, given an objective, we typically construct a loss function
- This is a function of the model parameters and the data

$$
\begin{aligned}
& L_{S E}=\sum_{n}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2} \\
& \quad \begin{array}{c}
\text { On objective is achieved when the loss } \\
\text { Function is minimised }
\end{array} \\
&
\end{aligned}
$$

Minimising squared error

- We can plug $\hat{y}=w x+b$ into the SE equation and assume fixed training data

$$
L_{S E}(w, b)=\sum_{n}\left(y^{(n)}-w x^{(n)}-b\right)^{2}
$$

- We want the w and b that minimise SE
- These occur when $\nabla L_{S E}=\left[\begin{array}{l}\frac{\partial L_{S E}}{\partial w} \\ \frac{\partial L_{S E}}{\partial b}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

A line of best fit

After some fairly tedious algebra, we get

$$
w=\frac{\frac{1}{N} \Sigma_{n} x^{(n)} y^{(n)}-\bar{x} \bar{y}}{\frac{1}{N} \Sigma_{n} x^{(n)^{2}}-\bar{x}^{2}} \quad b=\bar{y}-w \bar{x}
$$

$$
\text { Where } \bar{x}=\frac{1}{N} \sum_{n} x^{(n)} \text { and } \bar{y}=\frac{1}{N} \sum_{n} y^{(n)}
$$

Plug in the training data and we get a line that minimises the distances between target and predictions

Multiple linear regression

- We just performed simple linear regression, mapping $\mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$
- Multiple linear regression maps $\mathbb{R}^{D>1} \rightarrow \mathbb{R}^{1}$
- Let's predict petal width from the other three measurements in the iris dataset

Writing our function as a dot product

- Our function has a weight for each variable and an intercept (bias)

$$
f(\mathbf{x})=\hat{y}=w_{0} x_{0}+w_{1} x_{1}+w_{2} x_{2}+b
$$

- We can write this function as a dot product of vectors by:

1. Writing $\mathbf{w}=\left[\begin{array}{llll}b & w_{0} & w_{1} & w_{2}\end{array}\right]^{\top}$
2. Defining $\phi(\mathbf{x})=\left[\begin{array}{ll}1 & \mathbf{x}^{\top}\end{array}\right]^{\top}=\left[\begin{array}{llll}1 & x_{0} & x_{1} & x_{2}\end{array}\right]^{\top}$

$$
f(\mathbf{x})=\hat{y}=\mathbf{w}^{\top} \phi(\mathbf{x})
$$

Minimising squared error

- We want to find \mathbf{w} that minimises SE

$$
L_{S E}(\mathbf{w})=\sum_{n}\left(y^{(n)}-\mathbf{w}^{\top} \phi\left(\mathbf{x}^{(n)}\right)\right)^{2}
$$

- We can express this loss as a vector norm with some rewriting:

$$
\mathbf{y}=\left[\begin{array}{c}
y^{(0)} \\
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N-1)}
\end{array}\right] \boldsymbol{\Phi}=\left[\begin{array}{c}
\phi\left(\mathbf{x}^{(0)}\right)^{\top} \\
\phi\left(\mathbf{x}^{(1)}\right)^{\top} \\
\phi\left(\mathbf{x}^{(2)}\right)^{\top} \\
\vdots \\
\left.\phi\left(\mathbf{x}^{(N-1)}\right)^{\top}\right)
\end{array}\right] \quad L_{S E}(\mathbf{w})=\|\mathbf{y}-\mathbf{\Phi} \mathbf{W}\|^{2}
$$

Vector calculus to the rescue

$$
L_{S E}(\mathbf{w})=\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{w}\|^{2}=(\mathbf{y}-\boldsymbol{\Phi} \mathbf{w})^{\top}(\mathbf{y}-\boldsymbol{\Phi} \mathbf{w})
$$

- Take the gradient and set to zero to get minimum

This function is convex: it only
has one extremum which is a minimum

$$
\nabla_{\mathbf{w}} L_{M S E}=-2 \boldsymbol{\Phi}^{\top}(\mathbf{y}-\boldsymbol{\Phi} \mathbf{w})=0
$$

- And rearrange

$$
\mathbf{w}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \mathbf{\Phi}^{\top} \mathbf{y}
$$

You are not required to do any vector or matrix calculus by hand on this course.
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf is a useful reference for this however.

How do we evaluate the model?

- Can compute the mean SE (MSE): 0.03586 (small which is good)
- Can compute $R^{2}: 0.93785$ (high which is good - can be 1 at most)
- Can compare predicted petal widths $\hat{y}=\mathbf{w}^{\top} \phi(\mathbf{x})$ to actual petal widths y
- But we want to apply our models to new data...

Test set

- We ultimately want our models to do well on new data
- Models should be evaluated on data that wasn't used for training
- Solution: Evaluate model on a test set (can split dataset into train/test)
- A model that can perform well on test is able to generalise
- The test set must never be used to fit the model

A model that performs

badly on the test set is rubbish!

Evaluation

- Let's split the iris dataset into 80% training and 20% test at random
- Learn weights on train, apply to test
- Train MSE: 0.03536 and Test MSE: 0.03906
- Train $R^{2}: 0.9409$ and Test $R^{2}: 0.9179$

How do we interpret the model?

$$
\begin{aligned}
& \mathbf{w}=\left[\begin{array}{c}
b \\
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{c}
-0.32 \\
-0.18 \\
0.21 \\
0.52
\end{array}\right] \\
& \hat{y}=-0.18 x_{0}+0.21 x_{1}+0.52 x_{2}-0.32 \\
& \text { Petal } \\
& \text { length } \\
& \text { Sepal } \\
& \text { length } \\
& \text { Sepal } \\
& \text { width } \\
& \text { Petal } \\
& \text { length }
\end{aligned}
$$

- With linear models, the weights tell you the contribution of each variable to the prediction
- But this isn't simple to interpret if the data isn't standardised

Standardised results

- We compute the variable means and standard deviations on the training set
- Then apply these to the training set and the test set!
- The learnt weights are now simple to interpret

$$
\underset{\substack{\text { Petal } \\ \text { length }}}{\substack{\text { Standardised } \\ \text { Sepal length }} \underset{\substack{\text { Standardised } \\ \text { Sepal width }}}{\substack{\text { Standardised } \\ \text { Petal length }}}}
$$

Polynomial regression

- Consider the 1D training set of data-target pairs below $\left\{x^{(n)}, y^{(n)}\right\}_{n=0}^{N-1}$
- The relationship between data and targets is curvilinear
- Simple linear regression produces a model that underfits to the data
- The model doesn't have the capacity to capture the way the data varies

Polynomial regression

- We can use an $M^{t h}$ degree polynomial as our model $\hat{y}=f(x)=\sum_{m=0}^{M} w_{m} x^{m}$
- Using $M=3$ (i.e. a cubic) gives us a good fit
- This is still linear regression as the model is linear in the weights!

How do we fit this function?

- Our function is $\hat{y}=f(x)=\sum_{m=0}^{M} w_{m} x^{m}$

1. (Re)define $\phi(\mathbf{x})=\left[\begin{array}{lllll}1 & x & x^{2} & \ldots & x^{M}\end{array}\right]^{\top}$
2. Write $\mathbf{w}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \ldots & w^{M}\end{array}\right]^{\top}$

- We get $f(\mathbf{x})=\hat{y}=\mathbf{w}^{\top} \phi(\mathbf{x})$ and we can again write $L_{S E}(\mathbf{w})=\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{w}\|^{2}$
- We can minimise this with $\mathbf{w}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}$ as before

Varying M

Overfitting

- These models have overfit to the training data
- We want our models to generalise to test data -these don't!
- Spoilers: $y=\sin ((x-a) / b)+\mathcal{N}\left(0,0.25^{2}\right)$
- The models have too much capacity, and are latching on to the noise

Regularisation

- We ultimately want to maximise test performance i.e. minimise test error
- The model should have the capacity to represent the function we care about
- But high capacity models tend to overfit
- Regularisation techniques combat overfitting by making the model simpler

L2 regularisation

- Overfitted models tend to have large weights

$$
y=30.38 x^{19}-18.83 x^{18}-313.41 x^{17}+\ldots
$$

- We can regularise our model by penalising large weight values
- Let's add a term to our loss function that is small when weights are small

$$
L_{\text {ridge }}(\mathbf{w})=\underbrace{\|\mathbf{y}-\mathbf{\Phi} \mathbf{w}\|^{2}}_{S E}+\underbrace{\lambda\|\mathbf{w}\|^{2}}_{\text {regularisation }}
$$

Ridge regression

$$
L_{\text {ridge }}(\mathbf{w})=\underbrace{\|\mathbf{y}-\mathbf{\Phi} \mathbf{w}\|^{2}}_{S E}+\underbrace{\lambda\|\mathbf{w}\|^{2}}_{\text {regularisation }} \text { where }\|\mathbf{w}\|^{2}=\mathbf{w}^{\top} \mathbf{w}
$$

- λ is a hyperparameter that tells us how important regularisation is
- Let's take the gradient and set to zero to get the optimal weights

$$
\begin{aligned}
& \nabla_{\mathbf{w}} L_{\text {ridge }}=-2 \boldsymbol{\Phi}^{\top}(\mathbf{y}-\boldsymbol{\Phi} \mathbf{w})+2 \lambda \mathbf{w}=0 \\
& \mathbf{w}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}+\lambda I\right)^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}
\end{aligned}
$$

But in practice, we don't regularise the bias term!

Varying λ for $M=10$

The validation set

- Our goal is to perform well on the test set. Can we try different values of λ and pick the one that maximises test performance?
- No! This would be using the test set to fit the model
- Instead, we split the dataset three-ways: train, validation, test
- The validation set is used to tune hyperparameters

Hyperparameter tuning with grid search

- Create a list of λ values and for each value fit a model on the training set
- Evaluate each model on the validation set (e.g. with MSE or R^{2})
- Keep the model that performs best on validation then apply to test

Grid search

- We create a grid of possible values for each hyperparameter
- We then train a model for each grid element, and pick the model that performs best on validation. This is model selection
- With one hyperparameter, the grid is 1D, with two it's 2D and so on
- This can quickly get very expensive!

Imagine we have hyperparameters α and β. Let's search over $\alpha=\{0,1\}$ and $\beta=\{0.1,1,10\}$

A general framework for linear regression

All the models so far assume the form $f(\mathbf{x})=\hat{y}=\mathbf{w}^{\top} \phi(\mathbf{x})$

- For simple linear regression $\phi(x)=\left[\begin{array}{ll}1 & x\end{array}\right]^{\top}$
- For multiple linear regression $\phi(\mathbf{x})=\left[\begin{array}{ll}1 & \mathbf{x}^{\top}\end{array}\right]^{\top}$
- For polynomial regression $\phi(x)=\left[\begin{array}{lllll}1 & x & x^{2} & \ldots & x^{M}\end{array}\right]^{\top}$
- In each case \mathbf{w} is a vector of weights with the same dimensionality as $\phi(x)$

$$
L_{\text {ridge }}(\mathbf{w})=\underbrace{\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{w}\|^{2}}_{S E}+\underbrace{\lambda\|\mathbf{w}\|^{2}}_{\text {regularisation }} \quad \mathbf{w}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}+\lambda I\right)^{-1} \mathbf{\Phi}^{\top} \mathbf{y}
$$

Basis functions and feature vectors

- $\phi(\mathbf{x})$ provides a basis for \mathbf{x} (which can be non-linear e.g. polynomial)
- $\phi(\mathbf{x})=\left[\begin{array}{lllll}a(\mathbf{x}) & b(\mathbf{x}) & c(\mathbf{x}) & \ldots & z(\mathbf{x})\end{array}\right]^{\top}$
- These can be whatever!
- Our predictions are a just linear combination of the elements of $\phi(\mathbf{x})$
- These elements are called basis functions
- $\phi(\mathbf{x})$ is the feature vector for \mathbf{x} and ϕ is a feature map

Gaussian basis functions

- We can design our own $\phi(\mathbf{x}) ; \boldsymbol{\Phi}$ is often referred to as the design matrix
- Each basis function could be a Gaussian centred on each training point

$$
\phi(x)=\left[\begin{array}{llll}
e^{-\left(x-x^{(0)}\right)^{2} / \sigma^{2}} & e^{-\left(x-x^{(1)}\right)^{2} / \sigma^{2}} & e^{-\left(x-x^{(2)}\right)^{2} / \sigma^{2}} & \ldots
\end{array} e^{-\left(x-x^{(N-1)}\right)^{2} / \sigma^{2}}\right]^{\top}
$$

- Here, σ is an additional hyperparameter

The pesky bias term

- We've been writing $f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})$ where $\mathbf{w}=\left[\begin{array}{llll}b & w_{0} & w_{1} & \ldots\end{array}\right]^{\top}$
- Models in sklearn are $f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b$ where $\mathbf{w}=\left[\begin{array}{lll}w_{0} & w_{1} & \cdots\end{array}\right]^{\top}$
- i.e. the bias term is explicit
- This means we don't need to include a constant term in $\phi(\mathbf{x})$ in practice
- Make sure you're happy with this as we will start using $f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b$ when we consider linear models for classification

The maths for regression is a lot nicer if the bias is included with the weights

Lasso regression

$$
L_{\text {lasso }}(\mathbf{w})=\underbrace{\frac{1}{2 N}\|\mathbf{y}-\mathbf{\Phi} \mathbf{w}\|^{2}}_{M S E}+\underbrace{\lambda|\mathbf{w}|}_{\text {regularisation }}
$$

- Very similar to ridge regression except the SE term has been scaled and the regularisation term is a 1 -norm
- 1-norm encourages sparsity in \mathbf{w} which is a form of variable selection

The minimum occurs at one of the points where the contours of the two terms are at a tangent

Such points are more likely to occur at the corners of The 1-norm contours

Optimisation

- Finding the weights that minimise a loss function on training data is an optimisation problem minimise $L(\mathbf{w})$ with solution $\mathbf{w}^{*}=\arg \min L(\mathbf{w})$

W
w

- This was simple for $L_{\text {ridge }}(\mathbf{w})$ which is convex and differentiable
- We just compute $\nabla_{\mathbf{w}} L_{\text {ridge }}$ and set to zero
- However, $L_{\text {lasso }}(\mathbf{w})$ is non-differentiable

$$
L_{\text {lasso }}(\mathbf{w})=\underbrace{\frac{1}{2 N}\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{w}\|^{2}}_{M S E}+\underbrace{\lambda|\mathbf{w}|}_{\text {regularisation }}
$$

Convexity

- Convex functions have one extremum which is a minimum. This is very useful for optimisation!

- A function of one variable is convex if a line drawn between any two points on the function doesn't fall below the function

Lasso is convex

- $|w|$ is convex (as is $|\mathbf{w}|$): it clearly has a minimum at $w=0$.
- It not being differentiable doesn't change this

- The sum of two convex functions is convex

$$
L_{\text {lasso }}(\mathbf{w})=\underbrace{\frac{1}{2 N}\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{w}\|^{2}}_{M S E}+\underbrace{\lambda|\mathbf{w}|}_{\text {regularisation }}
$$

- $L_{\text {lasso }}(\mathbf{w})$ is convex, we just need to find its minimum

Subderivatives

- $g(w)=|w|$ is piecewise differentiable

- We can evaluate the gradient at any point (except $w=0$)
- This is all we need to do to perform gradient descent (GD)

Gradient descent (GD) intuition

- We have a function $L(\mathbf{w})$ and we want to find $\mathbf{w}^{*}=\arg \min L(\mathbf{w})$ w
- Let's initialise \mathbf{w} at random and call it $\mathbf{w}_{t=0}$
- The gradient at $\mathbf{w}_{t=0}: \nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=0}\right)$ tells us locally the direction we can move $\mathbf{w}_{t=0}$ to most increase the function
- Move in the opposite direction!

$$
\mathbf{w}_{t=1}=\mathbf{w}_{t=0}-\alpha \nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=0}\right)
$$

Gradient descent (GD) algorithm

Goal: We have a function $L(\mathbf{w})$ and we want to find $\mathbf{w}^{*}=\arg \min L(\mathbf{w})$
W

- Initialise \mathbf{W} as $\mathbf{w}_{t=0}$
- For i in range(T):

1. Compute $\nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=i}\right)$
2. Update $\mathbf{w}_{t=i+1}=\mathbf{w}_{t=i}-\alpha \nabla_{\mathbf{w}} L\left(\mathbf{w}_{t=i}\right)$
α is called the step size, or learning rate

Optimisation algorithms

- The process of using an optimisation algorithm to learn the weights that minimise a loss function on training data is known as ... training!
- There are many optimisation algorithms; some work better than others for different methods
- We will only detail variations of gradient descent on this course
- Sklearn will default to whatever optimiser tends to work best for a method
- Please be happy using optimisation algorithms that you haven't learnt about, and if you're not - go find out how they work!

Summary

- We have learnt about different types of linear regression
- We have reasoned the need for a test set for evaluation
- We have discovered how regularisers can prevent overfitting
- We have learnt how a validation set may be used to tune hyperparameters
- We have found out what convex functions are
- We have explored gradient descent for optimising convex functions

