
Elliot J. Crowley, 13th February 2023

Data Analysis and Machine
Learning 4
Week 5: Linear Regression

• We learned about supervised learning and looked at some examples

• We considered ethical issues that can arise when applying ML in society

Recap

image model category 
decision

Supervised Learning
• We want a model that takes in a new data point and outputs a prediction

• For the model to be accurate it must first learn from training data

• Often, models are parameterised functions and learning = finding the best parameters

• Training data is a set of existing data points that have been labelled

• The label says what the prediction for that data point should be

new 
data model prediction

Two canonical problems in supervised learning

• Regression: Given input data, predict a continuous output

• Classification: Given input data, predict a distinct category

cat dog

Linear Regression

The regression problem

• Our training set consists of data point-target pairs

• Data points are column vectors, targets (/labels) are scalar

• We can use matrix/vector notation as in Week 3

• Objective: We want some function such that for each training
point. This function is our regression model

N {x(n), y(n)}N−1
n=0

x ∈ ℝD y ∈ ℝ1

f f(x(n)) = y(n)

X =

x(0)⊤

x(1)⊤

x(2)⊤

⋮
x(N−1)⊤

=

x(0)
0 x(0)

1 … x(0)
D−1

x(1)
0 x(1)

1 … x(1)
D−1

x(2)
0 x(2)

1 … x(2)
D−1

… … ⋱ ⋮
x(N−1)

0 x(N−1)
1 … x(N−1)

D−1

y =

y(0)

y(1)

y(2)

⋮
y(N−1)

Simple linear regression

• We have 1D measurements of mass-extension pairs

• We want a regression model represented by s.t. for each point

• Let’s use a function that is linear in and denote its outputs as

{x(n), y(n)}N−1
n=0

f f(x(n)) = y(n)

x ̂y

f(x) = ̂y = wx + b
 and are the parameters of the model

 is called the weight and is called the bias

w b

w b

Our function predicts the targets

• are predictions of our targets

• We wanted a model such that for each point

• But we can’t achieve this: a line can’t perfectly fit the data here

• Can we relax our objective?

̂y(0), ̂y(1), …, ̂y(N−1) y(0), y(1), …, y(N−1)

f ̂y(n) = y(n)

f(x) = ̂y = wx + b

The squared error loss function

• Let’s instead minimise the square distance between every and :

• In ML, given an objective, we typically construct a loss function

• This is a function of the model parameters and the data

̂y(n) y(n)

(y(n) − ̂y(n))2

LSE = ∑
n

(y(n) − ̂y(n))2

Our objective is achieved when the loss
Function is minimised

Minimising squared error

• We can plug into the SE equation and assume fixed training data

• We want the and that minimise SE

• These occur when

̂y = wx + b

w b

∇LSE =
∂LSE

∂w
∂LSE

∂b

= [0
0]

LSE(w, b) = ∑
n

(y(n) − wx(n) − b)2

This function is convex: it only has one extremum which is a minimum

A line of best fit
After some fairly tedious algebra, we get

Plug in the training data and we get  
a line that minimises the distances

 between target and predictions

b = ȳ − wx̄w =
1
N Σnx(n)y(n) − x̄ȳ

1
N Σnx(n)2 − x̄2

Where and
x̄ =
1
N ∑

n

x(n) ȳ =
1
N ∑

n

y(n)

Multiple linear regression

• We just performed simple linear regression, mapping

• Multiple linear regression maps

• Let’s predict petal width from the other three measurements in the iris dataset

ℝ1 → ℝ1

ℝD>1 → ℝ1

x = [x0 x1 x2]⊤

Sepal length Sepal width Petal length

y Petal width

Writing our function as a dot product

• Our function has a weight for each variable and an intercept (bias)

• We can write this function as a dot product of vectors by:

1. Writing

2. Defining

 
 

f(x) = ̂y = w0x0 + w1x1 + w2x2 + b

w = [b w0 w1 w2]⊤

ϕ(x) = [1 x⊤]⊤ = [1 x0 x1 x2]⊤

f(x) = ̂y = w⊤ϕ(x)

Minimising squared error

• We want to find that minimises SE

• We can express this loss as a vector norm with some rewriting:

w

LSE(w) = ∑
n

(y(n) − w⊤ϕ(x(n)))2

Φ =

ϕ(x(0))⊤

ϕ(x(1))⊤

ϕ(x(2))⊤

⋮
ϕ(x(N−1))⊤)

LSE(w) = ∥y − Φw∥2y =

y(0)

y(1)

y(2)

⋮
y(N−1)

Vector calculus to the rescue

• Take the gradient and set to zero to get minimum

• And rearrange

LSE(w) = ∥y − Φw∥2 = (y − Φw)⊤(y − Φw)

∇wLMSE = − 2Φ⊤(y − Φw) = 0

w = (Φ⊤Φ)−1Φ⊤y

This function is convex: it only
has one extremum which is a

minimum

You are not required to do any vector or matrix calculus by hand on this course.
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf is a useful reference for this however.

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

How do we evaluate the model?

• Can compute the mean SE (MSE): 0.03586 (small which is good)

• Can compute : 0.93785 (high which is good — can be 1 at most)

• Can compare predicted petal widths to actual petal widths

• But we want to apply our models to new data…

R2

̂y = w⊤ϕ(x) y

R2 = 1 −
∑n (y(n) − ̂y(n))2

∑n (y(n) − ȳ)2

Mean y

 is the fraction of the
variance of that is

explained by the model

R2

y

Test set

• We ultimately want our models to do well on new data

• Models should be evaluated on data that wasn’t used for training

• Solution: Evaluate model on a test set (can split dataset into train/test)

• A model that can perform well on test is able to generalise

• The test set must never be used to fit the model

A model that performs
badly on the test set is

rubbish!

Evaluation

• Let’s split the iris dataset into 80% training and 20% test at random

• Learn weights on train, apply to test

• Train MSE: 0.03536 and Test MSE: 0.03906

• Train : 0.9409 and Test : 0.9179R2 R2

How do we interpret the model?

• With linear models, the weights tell you the contribution of each variable to
the prediction

• But this isn’t simple to interpret if the data isn’t standardised

w =

b
w0
w1
w2

=

−0.32
−0.18
0.21
0.52

Sepal
length

Sepal
width

Petal
length

Petal
length

̂y = − 0.18x0 + 0.21x1 + 0.52x2 − 0.32

Variables have their own scales!

Standardised results

• We compute the variable means and standard deviations on the training set

• Then apply these to the training set and the test set!

• The learnt weights are now simple to interpret

Standardised
Sepal length

Standardised

Sepal width

Standardised

Petal length

Petal
length

̂y = − 0.15x0 + 0.09x1 + 0.92x2 + 1.17

• Consider the 1D training set of data-target pairs below

• The relationship between data and targets is curvilinear

• Simple linear regression produces a model that underfits to the data

• The model doesn’t have the capacity to capture the way the data varies

{x(n), y(n)}N−1
n=0

Polynomial regression

Polynomial regression

• We can use an degree polynomial as our model

• Using (i.e. a cubic) gives us a good fit

• This is still linear regression as the model is linear in the weights!

Mth ̂y = f(x) =
M

∑
m=0

wmxm

M = 3

How do we fit this function?

• Our function is

1. (Re)define

2. Write  

• We get and we can again write

• We can minimise this with as before

̂y = f(x) =
M

∑
m=0

wmxm

ϕ(x) = [1 x x2 … xM]⊤

w = [w0 w1 w2 … wM]⊤

f(x) = ̂y = w⊤ϕ(x) LSE(w) = ∥y − Φw∥2

w = (Φ⊤Φ)−1Φ⊤y

Varying M

• These models have overfit to the training data

• We want our models to generalise to test data —these don’t!

• Spoilers:

• The models have too much capacity, and are latching on to the noise

y = sin((x − a)/b) + 𝒩(0,0.252)

Overfitting

Regularisation

• We ultimately want to maximise test performance i.e. minimise test error

• The model should have the capacity to represent the function we care about

• But high capacity models tend to overfit

• Regularisation techniques combat overfitting by making the model simpler

This figure is my reproduction of Figure 5.3 from https://www.deeplearningbook.org/contents/ml.html

L2 regularisation

• Overfitted models tend to have large weights

• We can regularise our model by penalising large weight values

• Let’s add a term to our loss function that is small when weights are small

y = 30.38x19 − 18.83x18 − 313.41x17 + …

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

Ridge regression

 where

• is a hyperparameter that tells us how important regularisation is

• Let’s take the gradient and set to zero to get the optimal weights

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

∥w∥2 = w⊤w

λ

∇wLridge = − 2Φ⊤(y − Φw) + 2λw = 0

w = (Φ⊤Φ + λI)−1Φ⊤y

This function is convex: it
only has one extremum

which is a minimum

But in practice, we
don’t regularise the

bias term!

Varying for λ M = 10

The validation set

• Our goal is to perform well on the test set. Can we try different values of and
pick the one that maximises test performance?

• No! This would be using the test set to fit the model

• Instead, we split the dataset three-ways: train, validation, test

• The validation set is used to tune hyperparameters

λ

Sometimes we will just use default hyperparameter
values!

Hyperparameter tuning with grid search

• Create a list of values and for each value fit a model on the training set

• Evaluate each model on the validation set (e.g. with MSE or)

• Keep the model that performs best on validation then apply to test

λ

R2

Grid search

• We create a grid of possible values for each hyperparameter

• We then train a model for each grid element, and pick the model that
performs best on validation. This is model selection

• With one hyperparameter, the grid is 1D, with two it’s 2D and so on

• This can quickly get very expensive!

Imagine we have
hyperparameters and .

Let’s search over
and

α β
α = {0,1}

β = {0.1,1,10}

R2
val = 0.46α = 0

α = 1

β = 0.1 β = 1 β = 10

R2
val = 0.52 R2

val = 0.39

R2
val = 0.73 R2

val = 0.87 R2
val = 0.79

A general framework for linear regression
All the models so far assume the form

• For simple linear regression

• For multiple linear regression

• For polynomial regression

• In each case is a vector of weights with the same dimensionality as

f(x) = ̂y = w⊤ϕ(x)

ϕ(x) = [1 x]⊤

ϕ(x) = [1 x⊤]⊤

ϕ(x) = [1 x x2 … xM]⊤

w ϕ(x)

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

w = (Φ⊤Φ + λI)−1Φ⊤y

Basis functions and feature vectors

• provides a basis for (which can be non-linear e.g. polynomial)

•

• These can be whatever!

• Our predictions are a just linear combination of the elements of

• These elements are called basis functions

• is the feature vector for and is a feature map

ϕ(x) x

ϕ(x) = [a(x) b(x) c(x) … z(x)]⊤

ϕ(x)

ϕ(x) x ϕ

Gaussian basis functions

• We can design our own ; is often referred to as the design matrix

• Each basis function could be a Gaussian centred on each training point

• Here, is an additional hyperparameter

ϕ(x) Φ

ϕ(x) = [e−(x−x(0))2/σ2 e−(x−x(1))2/σ2 e−(x−x(2))2/σ2 … e−(x−x(N−1))2/σ2]⊤

σ

The pesky bias term

• We’ve been writing where

• Models in sklearn are where

• i.e. the bias term is explicit

• This means we don’t need to include a constant term in in practice

• Make sure you’re happy with this as we will start using
when we consider linear models for classification

f(x) = w⊤ϕ(x) w = [b w0 w1 …]⊤

f(x) = w⊤ϕ(x) + b w = [w0 w1 …]⊤

ϕ(x)

f(x) = w⊤ϕ(x) + b

The maths for regression is a
lot nicer if the bias is included

with the weights

Lasso regression

• Very similar to ridge regression except the SE term has been scaled and the
regularisation term is a 1-norm

• 1-norm encourages sparsity in which is a form of variable selectionw

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation

The minimum occurs at one of the points where the
contours of the two terms are at a tangent

Such points are more likely to occur at the corners of

The 1-norm contours

Optimisation

• Finding the weights that minimise a loss function on training data is an
optimisation problem with solution

• This was simple for which is convex and differentiable

• We just compute and set to zero

• However, is non-differentiable

minimise
w

L(w) w* = arg min
w

L(w)

Lridge(w)

∇wLridge

Llasso(w)

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation

Convexity

• Convex functions have one extremum which is a minimum. This is very useful
for optimisation!

• A function of one variable is convex if a line drawn between any two points on
the function doesn’t fall below the function

Lasso is convex

• is convex (as is): it clearly has a minimum at .

• It not being differentiable doesn’t change this

• The sum of two convex functions is convex

• is convex, we just need to find its minimum

|w | |w | w = 0

Llasso(w)

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation

Subderivatives

• is piecewise differentiable

• We can evaluate the gradient at any point (except)

• This is all we need to do to perform gradient descent (GD)

g(w) = |w |

w = 0

dg
dw

= {1 if w > 0
−1 if w < 0

Gradient descent (GD) intuition

• We have a function and we want to find

• Let’s initialise at random and call it

• The gradient at : tells us locally the direction we can move
 to most increase the function

• Move in the opposite direction!

L(w) w* = arg min
w

L(w)

w wt=0

wt=0 ∇wL(wt=0)
wt=0

wt=1 = wt=0 − α∇wL(wt=0)

Gradient descent (GD) algorithm

Goal: We have a function and we want to find

• Initialise as

• For in range(T):

1. Compute

2. Update

L(w) w* = arg min
w

L(w)

w wt=0

i

∇wL(wt=i)

wt=i+1 = wt=i − α∇wL(wt=i)

 is called the step size, or learning rate

It is yet another hyperparameter

α

Optimisation algorithms

• The process of using an optimisation algorithm to learn the weights that
minimise a loss function on training data is known as … training!

• There are many optimisation algorithms; some work better than others for
different methods

• We will only detail variations of gradient descent on this course

• Sklearn will default to whatever optimiser tends to work best for a method

• Please be happy using optimisation algorithms that you haven’t learnt about,
and if you’re not — go find out how they work!

Summary

• We have learnt about different types of linear regression

• We have reasoned the need for a test set for evaluation

• We have discovered how regularisers can prevent overfitting

• We have learnt how a validation set may be used to tune hyperparameters

• We have found out what convex functions are

• We have explored gradient descent for optimising convex functions

