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Week 5: Linear Regression



• We learned about supervised learning and looked at some examples


• We considered ethical issues that can arise when applying ML in society
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Supervised Learning
• We want a model that takes in a new data point and outputs a prediction


• For the model to be accurate it must first learn from training data


• Often, models are parameterised functions and learning = finding the best parameters 

• Training data is a set of existing data points that have been labelled


• The label says what the prediction for that data point should be 

new 
data model prediction



Two canonical problems in supervised learning

• Regression: Given input data, predict a continuous output


• Classification: Given input data, predict a distinct category

cat dog



Linear Regression



The regression problem

• Our training set consists of  data point-target pairs  


• Data points  are column vectors, targets (/labels)  are scalar


• We can use matrix/vector notation as in Week 3


• Objective: We want some function  such that  for each training 
point. This function is our regression model
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Simple linear regression

• We have 1D measurements of mass-extension pairs 


• We want a regression model represented by  s.t.  for each point 


• Let’s use a function that is linear in  and denote its outputs as 

{x(n), y(n)}N−1
n=0

f f(x(n)) = y(n)

x ̂y

f(x) = ̂y = wx + b
 and  are the parameters of the model


 is called the weight and  is called the bias

w b

w b



Our function predicts the targets

•  are predictions of our targets 


• We wanted a model  such that  for each point


• But we can’t achieve this: a line can’t perfectly fit the data here


• Can we relax our objective?

̂y(0), ̂y(1), …, ̂y(N−1) y(0), y(1), …, y(N−1)

f ̂y(n) = y(n)

f(x) = ̂y = wx + b



The squared error loss function

• Let’s instead minimise the square distance between every  and : 



• In ML, given an objective, we typically construct a loss function


• This is a function of the model parameters and the data

̂y(n) y(n)

(y(n) − ̂y(n))2

LSE = ∑
n

(y(n) − ̂y(n))2

Our objective is achieved when the loss 
Function is minimised



Minimising squared error

• We can plug   into the SE equation and assume fixed training data


• We want the  and  that minimise SE


• These occur when 

̂y = wx + b

w b

∇LSE =
∂LSE

∂w
∂LSE

∂b

= [0
0]

LSE(w, b) = ∑
n

(y(n) − wx(n) − b)2

This function is convex: it only has one extremum which is a minimum



A line of best fit
After some fairly tedious algebra, we get


 

Plug in the training data and we get  
a line that minimises the distances


 between target and predictions


b = ȳ − wx̄w =
1
N Σnx(n)y(n) − x̄ȳ

1
N Σnx(n)2 − x̄2

Where  and 
x̄ =
1
N ∑

n

x(n) ȳ =
1
N ∑

n

y(n)



Multiple linear regression

• We just performed simple linear regression, mapping 


• Multiple linear regression maps 


• Let’s predict petal width from the other three measurements in the iris dataset

ℝ1 → ℝ1

ℝD>1 → ℝ1

x = [x0 x1 x2]⊤

Sepal length Sepal width Petal length

y Petal width



Writing our function as a dot product

• Our function has a weight for each variable and an intercept (bias)





• We can write this function as a dot product of vectors by:


1. Writing 


2. Defining 


 
 

f(x) = ̂y = w0x0 + w1x1 + w2x2 + b

w = [b w0 w1 w2]⊤

ϕ(x) = [1 x⊤]⊤ = [1 x0 x1 x2]⊤

f(x) = ̂y = w⊤ϕ(x)



Minimising squared error 

• We want to find  that minimises SE





• We can express this loss as a vector norm with some rewriting:


w

LSE(w) = ∑
n

(y(n) − w⊤ϕ(x(n)))2
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ϕ(x(1))⊤

ϕ(x(2))⊤

⋮
ϕ(x(N−1))⊤)

LSE(w) = ∥y − Φw∥2y =

y(0)

y(1)

y(2)

⋮
y(N−1)



Vector calculus to the rescue

• Take the gradient and set to zero to get minimum


• And rearrange

LSE(w) = ∥y − Φw∥2 = (y − Φw)⊤(y − Φw)

∇wLMSE = − 2Φ⊤(y − Φw) = 0

w = (Φ⊤Φ)−1Φ⊤y

This function is convex: it only 
has one extremum which is a 

minimum

You are not required to do any vector or matrix calculus by hand on this course.  
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf is a useful reference for this however.

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf


How do we evaluate the model?

• Can compute the mean SE (MSE): 0.03586 (small which is good)


• Can compute : 0.93785 (high which is good — can be 1 at most)


• Can compare predicted petal widths  to actual petal widths 


• But we want to apply our models to new data…

R2

̂y = w⊤ϕ(x) y

R2 = 1 −
∑n (y(n) − ̂y(n))2

∑n (y(n) − ȳ)2

Mean y

 is the fraction of the 
variance of  that is 

explained by the model

R2

y



Test set 

• We ultimately want our models to do well on new data 

• Models should be evaluated on data that wasn’t used for training


• Solution: Evaluate model on a test set (can split dataset into train/test)


• A model that can perform well on test is able to generalise 

• The test set must never be used to fit the model

A model that performs 
badly on the test set is 

rubbish!



Evaluation

• Let’s split the iris dataset into 80% training and 20% test at random


• Learn weights on train, apply to test 


• Train MSE: 0.03536 and Test MSE: 0.03906


• Train : 0.9409 and Test :  0.9179R2 R2



How do we interpret the model?

• With linear models, the weights tell you the contribution of each variable to 
the prediction


• But this isn’t simple to interpret if the data isn’t standardised 

w =

b
w0
w1
w2

=

−0.32
−0.18
0.21
0.52

Sepal 
length

Sepal 
width

Petal 
length

Petal 
length

̂y = − 0.18x0 + 0.21x1 + 0.52x2 − 0.32

Variables have their own scales!



Standardised results

• We compute the variable means and standard deviations on the training set


• Then apply these to the training set and the test set! 

• The learnt weights are now simple to interpret 

Standardised 
Sepal length

Standardised 

Sepal width

Standardised 

Petal length 

Petal 
length

̂y = − 0.15x0 + 0.09x1 + 0.92x2 + 1.17



• Consider the 1D training set of data-target pairs below 


• The relationship between data and targets is curvilinear


• Simple linear regression produces a model that underfits to the data


• The model doesn’t have the capacity to capture the way the data varies

{x(n), y(n)}N−1
n=0

Polynomial regression



Polynomial regression

• We can use an   degree polynomial as our model 


• Using  (i.e. a cubic) gives us a good fit


• This is still linear regression as the model is linear in the weights!

Mth ̂y = f(x) =
M

∑
m=0

wmxm

M = 3



How do we fit this function?

• Our function is 


1. (Re)define 


2. Write  

• We get   and we can again write  


• We can minimise this with  as before

̂y = f(x) =
M

∑
m=0

wmxm

ϕ(x) = [1 x x2 … xM]⊤

w = [w0 w1 w2 … wM]⊤

f(x) = ̂y = w⊤ϕ(x) LSE(w) = ∥y − Φw∥2

w = (Φ⊤Φ)−1Φ⊤y



Varying M



• These models have overfit to the training data


• We want our models to generalise to test data —these don’t!


• Spoilers: 


•  The models have too much capacity, and are latching on to the noise

y = sin((x − a)/b) + 𝒩(0,0.252)

Overfitting



Regularisation

• We ultimately want to maximise test performance i.e. minimise test error


• The model should have the capacity to represent the function we care about


• But high capacity models tend to overfit 


• Regularisation techniques combat overfitting by making the model simpler 

This figure is my reproduction of Figure 5.3 from https://www.deeplearningbook.org/contents/ml.html



L2 regularisation

• Overfitted models tend to have large weights


• We can regularise our model by penalising large weight values


• Let’s add a term to our loss function that is small when weights are small

y = 30.38x19 − 18.83x18 − 313.41x17 + …

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation



Ridge regression

 where 


•  is a hyperparameter that tells us how important regularisation is


• Let’s take the gradient and set to zero to get the optimal weights 

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

∥w∥2 = w⊤w

λ

∇wLridge = − 2Φ⊤(y − Φw) + 2λw = 0

w = (Φ⊤Φ + λI)−1Φ⊤y

This function is convex: it 
only has one extremum 

which is a minimum

But in practice, we 
don’t regularise the 

bias term!



Varying  for λ M = 10



The validation set

• Our goal is to perform well on the test set. Can we try different values of  and 
pick the one that maximises test performance?


• No! This would be using the test set to fit the model 

• Instead, we split the dataset three-ways: train, validation, test


• The validation set is used to tune hyperparameters

λ

Sometimes we will just use default hyperparameter 
values!



Hyperparameter tuning with grid search

• Create a list of  values and for each value fit a model on the training set


• Evaluate each model on the validation set (e.g. with MSE or )


• Keep the model that performs best on validation then apply to test

λ

R2



Grid search

• We create a grid of possible values for each hyperparameter


• We then train a model for each grid element, and pick the model that 
performs best on validation. This is model selection


• With one hyperparameter, the grid is 1D, with two it’s 2D and so on


• This can quickly get very expensive!

Imagine we have 
hyperparameters  and .


Let’s search over  
and 

α β
α = {0,1}

β = {0.1,1,10}

R2
val = 0.46α = 0

α = 1

β = 0.1 β = 1 β = 10

R2
val = 0.52 R2

val = 0.39

R2
val = 0.73 R2

val = 0.87 R2
val = 0.79



A general framework for linear regression
All the models so far assume the form 


• For simple linear regression 


• For multiple linear regression  


• For polynomial regression 


• In each case  is a vector of weights with the same dimensionality as 

f(x) = ̂y = w⊤ϕ(x)

ϕ(x) = [1 x]⊤

ϕ(x) = [1 x⊤]⊤

ϕ(x) = [1 x x2 … xM]⊤

w ϕ(x)

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

w = (Φ⊤Φ + λI)−1Φ⊤y



Basis functions and feature vectors

•  provides a basis for  (which can be non-linear e.g. polynomial)


• 


• These can be whatever!


• Our predictions are a just linear combination of the elements of 


• These elements are called basis functions


•  is the feature vector for  and  is a feature map

ϕ(x) x

ϕ(x) = [a(x) b(x) c(x) … z(x)]⊤

ϕ(x)

ϕ(x) x ϕ



Gaussian basis functions

• We can design our own ;  is often referred to as the design matrix


• Each basis function could be a Gaussian centred on each training point


 


• Here,  is an additional hyperparameter

ϕ(x) Φ

ϕ(x) = [e−(x−x(0))2/σ2 e−(x−x(1))2/σ2 e−(x−x(2))2/σ2 … e−(x−x(N−1))2/σ2]⊤

σ



The pesky bias term

• We’ve been writing  where 


• Models in sklearn are  where 


• i.e. the bias term is explicit


• This means we don’t need to include a constant term in  in practice 


• Make sure you’re happy with this as we will start using  
when we consider linear models for classification 

f(x) = w⊤ϕ(x) w = [b w0 w1 …]⊤

f(x) = w⊤ϕ(x) + b w = [w0 w1 …]⊤

ϕ(x)

f(x) = w⊤ϕ(x) + b

The maths for regression is a 
lot nicer if the bias is included 

with the weights



Lasso regression

• Very similar to ridge regression except the SE term has been scaled and the 
regularisation term is a 1-norm


• 1-norm encourages sparsity in  which is a form of variable selectionw

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation

The minimum occurs at one of the points where the 
contours of the two terms are at a tangent


Such points are more likely to occur at the corners of

The 1-norm contours



Optimisation

• Finding the weights that minimise a loss function on training data is an 
optimisation problem  with solution 


• This was simple for  which is convex and differentiable


• We just compute  and set to zero


• However,  is non-differentiable

minimise
w

L(w) w* = arg min
w

L(w)

Lridge(w)

∇wLridge

Llasso(w)

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation



Convexity

• Convex functions have one extremum which is a minimum. This is very useful 
for optimisation!


• A function of one variable is convex if a line drawn between any two points on 
the function doesn’t fall below the function



Lasso is convex

•  is convex (as is ): it clearly has a minimum at . 


• It not being differentiable doesn’t change this


• The sum of two convex functions is convex


•  is convex, we just need to find its minimum

|w | |w | w = 0

Llasso(w)

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation



Subderivatives

•  is piecewise differentiable


• We can evaluate the gradient at any point (except )


• This is all we need to do to perform gradient descent (GD)

g(w) = |w |

w = 0

dg
dw

= {1 if w > 0
−1 if w < 0



Gradient descent (GD) intuition

• We have a function  and we want to find 


• Let’s initialise  at random and call it 


• The gradient at  :  tells us locally the direction we can move 
 to most increase the function


• Move in the opposite direction!


L(w) w* = arg min
w

L(w)

w wt=0

wt=0 ∇wL(wt=0)
wt=0

wt=1 = wt=0 − α∇wL(wt=0)



Gradient descent (GD) algorithm

Goal: We have a function  and we want to find 


• Initialise  as 


• For  in range(T):


1. Compute 


2. Update 

L(w) w* = arg min
w

L(w)

w wt=0

i

∇wL(wt=i)

wt=i+1 = wt=i − α∇wL(wt=i)

 is called the step size, or learning rate 

It is yet another hyperparameter

α



Optimisation algorithms

• The process of using an optimisation algorithm to learn the weights that 
minimise a loss function on training data is known as … training!


• There are many optimisation algorithms; some work better than others for 
different methods


• We will only detail variations of gradient descent on this course


• Sklearn will default to whatever optimiser tends to work best for a method


• Please be happy using optimisation algorithms that you haven’t learnt about, 
and if you’re not — go find out how they work!



Summary

• We have learnt about different types of linear regression


• We have reasoned the need for a test set for evaluation


• We have discovered how regularisers can prevent overfitting


• We have learnt how a validation set may be used to tune hyperparameters


• We have found out what convex functions are


• We have explored gradient descent for optimising convex functions


