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Recap

* We learned about supervised learning and looked at some examples
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Supervised Learning

 \We want a model that takes in a new data point and outputs a prediction

new -
data —bm—b prediction

* For the model to be accurate it must first learn from training data
» Often, models are parameterised functions and learning = finding the best parameters
* Jraining data is a set of existing data points that have been labelled

* The label says what the prediction for that data point should be



Two canonical problems in supervised learning

 Regression: Given input data, predict a continuous output

—— function
® @ training data




Linear Regression



The regression problem

 Our training set consists of /V data point-target pairs {X(”), y(”)}g;ol

D 1

e Data points X € R™ are column vectors, targets (/labels) y € [R" are scalar

e \We can use matrix/vector notation as in Week 3
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. Objective: We want some function f'such that f(x"V) = y™ for each training
point. This function is our regression model



Simple linear regression

« \We have 1D measurements of mass-extension pairs {x(”), y(”)}],;:(}

. We want a regression model represented by f's.t. (x"™) = y™ for each point

» Let’s use a function that is linear in x and denote its outputs as

Extension vs. mass for a spring
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Our function predicts the targets

SO 51 H(N=1)

N—1
Y (N=1)

are predictions of our targets y(O), y(l), Y

» We wanted a model f such that W) = v for each point

 But we can’t achieve this: a line can’t perfectly fit the data here

e Can we relax our objective? Extension vs. mass for a spring
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The squared error loss function

. Let’s instead minimise the square distance between every ™ and y":
(y(”) _ A(n))Z

* |In ML, given an objective, we typically construct a loss function

* This is a function of the model parameters and the data
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Minimising squared error

« We can plug y = wx + b into the SE equation and assume fixed training data

60

LSE(W, b) — Z (y(n) - WX(n) o b)z Contour plot for SE 50
n
» We want the w and b that minimise SE
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This function is convex: it only has one extremum which is a minimum



A line of best fit

After some fairly tedious algebra, we get

Plug in the training data and we get
a line that minimises the distances
between target and predictions
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Multiple linear regression

 We just performed simple linear regression, mapping |

 Multiple linear regression maps |

D>1

— |

1

e | et’s predict petal width from the other three measurements in the iris dataset

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
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Writing our function as a dot product

* Our function has a weight for each variable and an intercept (bias)
f(X) =y = wyxg + wix; + wox, + b

* We can write this function as a dot product of vectors by:

1. Writing w = [b Wy Wi W2]

2. Defining @(X) = [1 XT]T = [1 X0 M XZ]T

fx) =3 =w ¢(x)



Minimising squared error

e We want to find w that minimises SE

Los(w) = ) (3™ = wTp(x"))?

* We can express this loss as a vector norm with some rewriting:

y p(x)!
y(l) ¢(X(1))T

y=| y@ | ®=| px®)T Lo (w) = ||y — ®w||°
(N-1) p(xV)T

Y



Vector calculus to the rescue

Lgpe(w) = [ly — @W||* = (y — ®W) ' (y — ®W)

This function is convex: it only

* Jake the gradient and set to zero to get minimum has one extremum which is a
minimuim

 And rearrange
w= (D' D) Py

You are not required to do any vector or matrix calculus by hand on this course.
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf is a useful reference for this however.



https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

How do we evaluate the model?

 Can compute the mean SE (MSE): 0.03586 (small which is good)

e Can compute R?: 0.93785 (high which is good — can be 1 at most)

. Can compare predicted petal widths § = w'@(X) to actual petal widths y

 But we want to apply our models to new data...

R* =1

zn (y(”) _ A(n))Z

B 2. (M —y)?
N

R? is the fraction of the

variance of y that is
explained by the model

Mean y

Actual vs. predicted petal widths
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Test set

* We ultimately want our models to do well on new data
 Models should be evaluated on data that wasn’t used for training
o Solution: Evaluate model on a test set (can split dataset into train/test)

A model that can perform well on test is able to generalise

e The test set must never be used to fit the model

A model that performs
badly on the test set is

rubbish!



Evaluation

* |Let’s split the iris dataset into 80% training and 20% test at random

* | earn weights on train, apply to test

* Train MSE: 0.03536 and Test MSE: 0.03906

e Train R?%: 0.9409 and Test R%: 0.9179

Petal Width

Actual vs. predicted petal widths on test set




How do we interpret the model?

b —0.32
W — "ol _ | —0.18
Wi 0.21
Wr 0.52
$ = —0.18x, + 0.21x; + 0.52x, — 0.32
Petal Sepal Sepal Petal
length length width length

 With linear models, the weights tell you the contribution of each variable to
the prediction

 But this isn’t simple to interpret if the data isn’t standardised

Variables have their own scales!



Standardised results

* \We compute the variable means and standard deviations on the training set
 Then apply these to the training set and the test set!

* The learnt weights are now simple to interpret

§ = — 0.15x, + 0.09x, + 0.92x, + 1.17

Petal Standardised Standardised Standardised
length Sepal length Sepal width Petal length



Polynomial regression

o Consider the 1D training set of data-target pairs below{x(”), y(”)}f;:ol

* [he relationship between data and targets is curvilinear
 Simple linear regression produces a model that underfits to the data

 The model doesn’t have the capacity to capture the way the data varies
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Polynomial regression

M
« We can use an M"* degree polynomial as our model $ = f(x) = Z w, X"

=0
* Using M = 3 (i.e. a cubic) gives us a good fit "

* This is still linear regression as the model is linear in the weights!
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How do we fit this function?

M
 Our functionisy = f(x) = Z w, X"

m=0
. T
1. (Re)define ¢(X) = [1 X x° ... xM]
- M| T B Foucin £ £ oy FeeadeT
2. Write w = [WO Wi Wy .. W ]

. We get f(x) = = w' ¢(X) and we can again write Lo (W) = ||y — ®w||°

. We can minimise this with w = (®'®)~'® "y as before
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Overfitting

 These models have overfit to the training data

 We want our models to generalise to test data —these don’t!

. Spoilers: y = sin((x — a)/b) + #7(0,0.25%)

>

The models have too much capacity, and are latching on to the noise
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Regularisation

* We ultimately want to maximise test performance i.e. minimise test error

 The model should have the capacity to represent the function we care about

* But high capacity models tend to overtfit

 Regularisation technigues combat overfitting by making the model simpler

Error

|\ Underfitting
\

-- train error
— test error

Overfitting

Capacity
This figure is my reproduction of Figure 5.3 from https://www.deeplearningbook.org/contents/ml.html



L2 regularisation

* QOverfitted models tend to have large weights

- y = 30.38x"” — 18.83x!% - 313.41x'" + ...

| —— function
@® training data
| |

|
-2 -1 0 1 2
X

* We can regularise our model by penalising large weight values

* |et’s add a term to our loss function that is small when weights are small

Lyigee(W) = [ly — @W|* +  A|lw||*

~ o~

SE regularisation



Ridge regression

(W) = Hy <I>WH2+ Allwll*  where [[w]|* = w'w

— — This function is convex: it

SE regularlsatmn only has one extremum
which is a minimum

rldge

A is a hyperparameter that tells us how important reqularisation is

o |et’s take the gradient and set to zero to get the optimal weights

VL., =—2®"(y—®w)+2iw =0

idge

But Iin practice, we

W = ((I)T(I) + 2] )_I(I)Ty don’t regularise the

bias term!




arying A for M = 10
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The validation set

« QOur goal is to perform well on the test set. Can we try different values of A and
pick the one that maximises test performance?

 No! This would be using the test set to fit the model
* |nstead, we split the dataset three-ways: train, validation, test

* [he validation set Is used to tune hyperparameters

Sometimes we will just use default hyperparameter
values!



Hyperparameter tuning with grid search

« Create a list of A values and for each value fit a model on the training set

e Evaluate each model on the validation set (e.g. with MSE or Rz)

 Keep the model that performs best on validation then apply to test

A=0.1, Train MSE =0.007, Val MSE=0.016

— function

® training data
® validation data

Loss curves for training and validation sets
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A =10, Train MSE =0.071, Val MSE=0.057
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0.00 -

l0g10A




Grid search

 We create a grid of possible values for each hyperparameter

 We then train a model for each grid element, and pick the model that
performs best on validation. This is model selection

* With one hyperparameter, the grid is 1D, with two it’s 2D and so on

® ' . | |
This can quickly get very expensive! B=0.1 _ 1 — 10

Imagine we have a = (0
hyperparameters a and /.

Let’s search over a = {0,1}

and f = {0.1,1,10} o=




A general framework for linear regression

All the models so far assume the form f(x) = § = w' ¢(x)

» For simple linear regression ¢(x) = |1 x]T

-
 For multiple linear regression ¢(X) = [1 XT]

.
« For polynomial regression ¢(x) = [1 x xz .. xM]

» In each case w is a vector of weights with the same dimensionality as ¢(x)

LyigeeW) = lly = @w[> +  Allw]P w=(®'®+A)" DTy

N N

SE regularisation



Basis functions and feature vectors

» @(X) provides a basis for X (which can be non-linear e.g. polynomial)

c p®) = [ax) bE) c(®) ... z(X)

e These can be whatever!

 Our predictions are a just linear combination of the elements of ¢(X)

e These elements are called basis functions

« ((X) is the feature vector for X and ¢ is a feature map



Gaussian basis functions

» We can design our own @(X); @ is often referred to as the design matrix

* Each basis function could be a Gaussian centred on each training point

gb(x) — [e—(x—x(0>)2/52 e_(x—x(l))z/(;2 e_(x_x(z))z/gz e—(x—x(N‘l))z/azl

 Here, o Is an additional hyperparameter
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The pesky bias term

.
. We’ve been writing f(X) = W' h(X) where w = [b Wy Wi ]

. Models in sklearn are f(X) = W' ¢§(X) + b wherew = [Wo Wy ...]'

* |.e. the bias term is explicit
 This means we don’t need to include a constant term in ¢(X) in practice

« Make sure you’re happy with this as we will start using f(X) = WTgb(X) + b
when we consider linear models for classification

The maths for regression is a
lot nicer if the bias is included
with the weights



Lasso regression

1
Ligsso(W) = —Ily — @w||*+  A|w|

2N

- 4

MSE

regularisation

* Very similar to ridge regression except the SE term has been scaled and the

regularisation term is a 1-norm

* 1-norm encourages sparsity in w which is a form of variable selection

Contour plot for MSE

Contour plot for 1-norm

The minimum occurs at one of the points where the
contours of the two terms are at a tangent

Such points are more likely to occur at the corners of
The 1-norm contours




Optimisation

* Finding the weights that minimise a loss function on training data is an
optimisation problem minimise L(w) with solution w* = arg min L(w)

W W

» This was simple for L,,;,.(W) which is convex and differentiable
- We just compute VL., and set to zero .
. However, L, .. (W) is non-differentiable o
§0.6-
1 0.4
Llasso(w) ﬁ”y (I)WH2 T+ /1 ‘ W ‘ 0.2
regularisation 0.0

MSE 1.0  -05 0.0 0.5

1.0




Convexity

* Convex functions have one extremum which is a minimum. This is very useful
for optimisation!

A convex function A non-convex function

* A function of one variable is convex if a line drawn between any two points on
the function doesn’t fall below the function

A convex function A non-convex function




Lasso IS convex

» |w| is convex (asis|w|): it clearly has a minimum at w = 0.

* |t not being differentiable doesn’t change this

e The sum of two convex functions Is convex

1
L w)= —I|ly—Pwl||?+ Alw
lass()( ) 2N”y H ’ ‘v ‘J
k MSE

e L, ...,(W)is convex, we just need to find its minimum

regularisation



Subderivatives

« g(w) = |w] is piecewise differentiable

1.0

0.8-

_ 06 @z {1 fw>0

0.4- dw —1 fw <0

0.2 A

0.0 -
—1.0 —0.5 0.0 0.5 1.0

« We can evaluate the gradient at any point (except w = 0)

* This is all we need to do to perform gradient descent (GD)



Gradient descent (GD) intuition

« We have a function L(w) and we want to find w* = arg min L(w)

 Let’s initialise w at random and call it w,_,

W

» The gradientat w,_,: VL(W,_,) tells us locally the direction we can move

W,._, to most increase the function

 Move In the opposite direction!

Wi = Wig — @V L(W,) :

L(we=1)

L(Wt: 0) vWL(Wt=O)




Gradient descent (GD) algorithm

Goal: We have a function L(w) and we want to find w* = arg min L(w)

o Initialise w as w,_
» For 1 in range(T):
1. Compute V,L(W,_)

2. Update Wf:i+1 — f—] aVWL(Wt:l)

a Is called the step size, or learning rate

It Is yet another hyperparameter W



Optimisation algorithms

* The process of using an optimisation algorithm to learn the weights that
minimise a loss function on training data is known as ... training!

* There are many optimisation algorithms; some work better than others for
different methods

 We will only detalil variations of gradient descent on this course
o Sklearn will default to whatever optimiser tends to work best for a method

* Please be happy using optimisation algorithms that you haven’t learnt about,
and if you’re not — go find out how they work!



Summary

 We have learnt about different types of linear regression

 We have reasoned the need for a test set for evaluation

* We have discovered how regularisers can prevent overfitting

 \We have learnt how a validation set may be used to tune hyperparameters
* We have found out what convex functions are

 We have explored gradient descent for optimising convex functions



