
Elliot J. Crowley, 27th February 2023

Data Analysis and Machine 
Learning 4
Week 6: Linear Classification



• We learned about different types of linear regression and regularisers


• We looked at convex functions and gradient descent

Recap

f(x) = ̂y = w⊤ϕ(x)

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation



Warning: change in notation!

• We have previously included the bias term  in the weight vector 


• This makes the maths for linear regression much nicer


• When considering classifiers it’s better to separate the weights from the bias


• From now on we will write our linear model as   


• The weight vector does not contain the bias 

b w

f(x) = w⊤ϕ(x) + b



Supervised Learning
• We want a model that takes in a new data point and outputs a prediction


• For the model to be accurate it must first learn from training data


• Often, models are parameterised functions and learning = finding the best parameters 

• Training data is a set of existing data points that have been labelled


• The label says what the prediction for that data point should be 

new 
data model prediction



Two canonical problems in supervised learning

• Regression: Given input data, predict a continuous output


• Classification: Given input data, predict a distinct category

cat dog



Classification



The classification problem

• Our training set consists of  data point-target pairs  


• Data points  are column vectors, targets are class labels 



• i.e. each data point has been labeled as belonging to 1 of  classes


• Objective: We want a model that classifies our training data correctly


• Objective: We want a model that classifies our held-out test data correctly

N {x(n), y(n)}N−1
n=0

x ∈ ℝD

y ∈ ℤ+
<K = {0,1,…, K − 1}

K

The most common way to quantify classification performance is accuracy 
 

This is simply the fraction or % of classifications that are correct



Linear Classifiers



Linear classifiers

• These are linear models  


• For now we will consider untransformed features so 


• For now we will consider binary classification:  or  

•  is a classification score: we decide how it is used to make a class 
prediction 


• e.g. we could use a thresholding function like  

f(x) = w⊤ϕ(x) + b

f(x) = w⊤x + b

y ∈ {0,1} y ∈ {−1,1}

f(x) ∈ ℝ1

̂y

̂y = {1 if f(x) > 0
0 if f(x) < 0



Why linear models?

• They are simple and intuitive 


• They are interpretable 


• They use vectors and matrices (computers love these) 


• They work well in many scenarios 

Slide inspired by https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition

https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition


Linear classifier decision boundary in 2D

• Consider a training set  with  and 


• We have    where  and 


• Predictions are determined using  


•  is a line which forms the decision boundary of the classifier

{x(n), y(n)}N−1
n=0 x ∈ ℝ2 y ∈ {0,1}

f(x) = w⊤x + b x = [x0 x1] w = [w0 w1]⊤

̂y = {1 if f(x) > 0
0 if f(x) < 0

f(x) = 0



Decision boundary are hyperplanes

For  the decision boundary of a linear classifier is in 


• In 1D the decision boundary is a point


• In 2D the decision boundary is a line


• In 3D the decision boundary is a plane


• In 4D and above the decision boundary is a hyperplane we can’t visualise but 
all the maths still works (:

x ∈ ℝD D − 1

. ?



Linear separability 
Our training data is linearly separable if we are able to draw a hyperplane that 
completely separates points from both classes

YES YES

NO NO



Learning the weights of linear classifiers

• For the classifier to be any good we have to learn ,  and on training data


• Once that is done we can throw away the training set


• We will now cover two different learning methods:


1. The perceptron algorithm (obsolete but foundational)


2. Logistic regression (popular and used a lot)

w b



The Perceptron algorithm



The Perceptron algorithm for training a linear classifier

We have a linearly separable training set  with  and 


We want  s.t.  


• Initialise  as  and  as 


• Shuffle, then cycle through 


• If  is misclassified then  , 


• Stop when all the data is classified correctly

{x(n), y(n)}N−1
n=0 x ∈ ℝD y ∈ {−1,1}

f(x(n)) = w⊤x(n) + b ̂y(n) = {1 if f(x(n)) ≥ 0
−1 if f(x(n)) < 0

∀n

w w = 0 b b = 0

{x(n), y(n)}N−1
n=0

x(n) w ← w + α y(n)x(n) b ← b + α y(n)

Note classes are 
-1 and 1 here for 

mathematical 
ease



Perceptron Learning: Update 0



Perceptron Learning: Update 1



Perceptron Learning: Update 2



Perceptron loss

• Can we phrase the perceptron algorithm as minimising some loss function?


• Yes. It is minimising a hinge loss using stochastic gradient descent (SGD)

The optimisation problem is to solve

 minimise

w,b
Lhinge

Lhinge =
1
N ∑

n

max(0, − y(n) f(x(n)))



Stochastic gradient descent (SGD)

• SGD is identical to GD except at each step the gradient is computed on a 
random subset of the data; for the perceptron this is a single data point


• Recall in GD the update is 


• Plugging into update gives

wt=i+1 = wt=i − α∇wL(wt=i)

L̃hinge = max(0, − y(n) f(x(n))) = max(0, − y(n)(w⊤x(n) + b))
∇wL̃hinge = {−y(n)x(n) if y(n) f(x(n)) < 0

0 if y(n) f(x(n)) > 0

wt=i+1 = wt=i + {αy(n)x(n) if y(n) f(x(n)) < 0
0 if y(n) f(x(n)) > 0

This is the same as 
the perceptron weight 

update!



We also have a bias!

• The bias needs to be updated too. This happens alongside each weight 
update


• The update for the bias is 


• Plugging into update gives

bt=i+1 = bt=i − α∇wL(wt=i)

L̃hinge = max(0, − y(n)(w⊤x(n) + b))
∇bL̃hinge = {−y(n) if y(n) f(x(n)) < 0

0 if y(n) f(x(n)) > 0

bt=i+1 = bt=i + {αy(n) if y(n) f(x(n)) < 0
0 if y(n) f(x(n)) > 0

This is the the same 
as the perceptron bias 

update!



Logistic Regression



Classification as regression

• Consider a training set  where   and 


• Let’s treat  as continuous : it just happens to be 0/1 for training data


• We can perform linear regression  to predict this “continuous” 
label


• This can be achieved by e.g. minimising 


• Can we predict something more meaningful?

{x(n), y(n)}N−1
n=0 x ∈ ℝD y ∈ {0,1}

y y ∈ ℝ1

f(x) = w⊤x + b

LMSE =
1
N ∑

n

(y(n) − w⊤x(n) − b)2



Logistic Regression

• Probabilities are meaningful as they quantify uncertainty


• We want to predict : the probability that  belongs to class 1


• We can’t predict this with our linear model  however


• This is because probabilities must lie between 0 and 1 and  is unbounded


• Let’s instead predict an unbounded quantity that is related to 


p(y = 1 |x) x

f(x) = w⊤x + b

f(x)

p(y = 1 |x)

f(x) = log
p(y = 1 |x)

1 − p(y = 1 |x)
The log-odds, or logit 



The sigmoid function

• In logistic regression our model predicts log-odds from data


•
 
We can rearrange to express  in terms of log-oddsp(y = 1 |x)

f(x) = log
p(y = 1 |x)

1 − p(y = 1 |x)

p(y = 1 |x) =
1

1 + e−f(x)
= σ( f(x)) = σ(w⊤x + b)

 is the sigmoid function. 

It squashes numbers to be between 0 and 1

σ



Making decisions

• We can convert log-odds to probabilities through 


• It follows that  as there are only two classes


• How do we make a class prediction ?


• The obvious approach is 


• But what if  represents a patient, class 1/0 are cancer/not-cancer diagnoses 
and you get ?

p(y = 1 |x) = σ( f(x))

p(y = 0 |x) = 1 − σ( f(x))

̂y

̂y = {1 if p(y = 1 |x) ≥ 0.5
0 if p(y = 1 |x) < 0.5

x
p(y = 1 |x) = 0.49



Learning weights using Maximum likelihood estimation (MLE)

• We can write 


• The likelihood of your training data is a sensible quantity to maximise





• Maximising  is the same as minimising 


p(y |x) = σ( f(x))y(1 − σ( f(x))1−y

ℓ = ∏
n

p(y(n) |x(n)) = ∏
n

σ( f(x(n)))y(n)(1 − σ( f(x(n)))1−y(n)

ℓ −
1
N

log ℓ

−
1
N

log ℓ = −
1
N ∑

n
[y(n) log σ( f(x(n))) + (1 − y(n))log(1 − σ( f(x(n)))]

Independence assumption



Cross-entropy loss




• This quantity is the cross entropy loss (averaged across data item)


•  Minimising this is equivalent to maximising likelihood


• Cross-entropy is a quantity that crops up in information theory


• It measures how much the probabilities produced by our model differ from the 
true probabilities (so low = good)


LCE = −
1
N ∑

n
[y(n) log σ( f(x(n))) + (1 − y(n))log(1 − σ( f(x(n)))]



Cross-entropy loss




• This loss is convex for a linear classifier


•  We can use e.g. GD or SGD to to solve  using:

 and 

LCE = −
1
N ∑

n
[y(n) log σ( f(x(n))) + (1 − y(n))log(1 − σ( f(x(n)))]

minimise
w,b

LCE

∇wLCE = −
1
N ∑

n
(y(n) − σ( f(x)))x(n) ∇bLCE = −

1
N ∑

n
(y(n) − σ( f(x)))



Decision boundary for logistic regression

• We have placed a sigmoid function over a linear model to turn its log-odds 
outputs into probabilities: 


• Classifications are usually made with 


• The decision boundary is at  


•  when  which is a still a hyperplane 

• We could rewrite the classification rule as 

p(y = 1 |x) = σ(w⊤x + b)

̂y = {1 if p(y = 1 |x) ≥ 0.5
0 if p(y = 1 |x) < 0.5

p(y = 1 |x) = σ(w⊤x + b) = 0.5

σ(w⊤x + b) = 0.5 w⊤x + b = 0

̂y = {1 if f(x) ≥ 0
0 if f(x) < 0



Titanic Dataset
• We can use historical data about passengers to learn a linear classifier to 

predict survival using logistic regression


• If we standardise data then the weights we learn are interpretable 


• Survival more probable for people who are in first class, female, young

For “Sex”, male has been mapped to 0 and female to 1 arbitrarily

w = [−0.97 1.27 −0.52 −0.27 −0.03 0.16]⊤

Gets 80% on held-out data so is a reasonable model

Pclass Sex Age SibSp Parch Fare



Perceptron vs. Logistic regression

• Both give linear classifiers 


• The main difference is in the classification loss used for optimisation


• In logistic regression the quantities being predicted, and the loss are meaningful


• We can add a regularisation term to either loss as before


• This could be L2 or L1 (or whatever!). L2 is most common


 

f(x) = w⊤x + b

Ltotal = Lclf⏟
classification

+
λ
2

∥w∥2

regularisation

Remember that the bias 
goes unregularised



Multi-class classification with linear classifiers

We have  with .


There are three different approaches to solving this:


1. We could learn  one-vs-rest classifiers:  and classify 
points according to the highest score


2. We could learn  one-vs-one classifiers and classify points 
according to the majority vote 


3. We could make our classifier output a vector where each element is a score 
for a different class and select the class with the highest score

{x(n), y(n)}N−1
n=0 y ∈ ℤ+

<K = {0,1,…, K − 1}

K f0(x), f1(x), …, fK−1(x)

(K(K − 1))/2



Multi-class linear classifiers

• In the binary case  where  and 


• For our classifier to output a score for each of  classes we can:


1. Replace the vector  with a matrix 


2. Replace the bias vector  with a vector 


• This gives us  where 

f(x) = w⊤x + b x ∈ ℝD f(x) ∈ ℝ1

K

w ∈ ℝD W ∈ ℝK×D

b ∈ ℝ1 b ∈ ℝK

f(x) = Wx + b f(x) ∈ ℝK

Like having 
 classifiers 

side-by-side
Kx bWf(x) +=



Multinomial logistic regression

• Logistic regression naturally extends to multi-class problems


• In the binary setting, we only had to consider  in terms of 


• In the multi-class setting we need to consider all the different probabilities


• Let’s store the probabilities in a vector 


• We will write  as some function  of   — the vector of logits

p(y = 1 |x) f(x)

p

p S f(x)

p =

p(y = 0 |x)
p(y = 1 |x)
p(y = 2 |x)

⋮
p(y = K − 1 |x)

= S( f(x))



Softmax 

•  must sum to 1 so we need a function that normalises 


• We will use the softmax function  which squashes  so it sums to 1

p f(x)

S f(x)

S(z) = S(

z0
z1
⋮

zK−1

) =

exp z0

∑K−1
k=0 exp zk

exp z1

∑K−1
k=0 exp zk

⋮
exp zK−1

∑K−1
k=0 exp zk



Learning for multinominal logistic regression

• We can minimise cross-entropy  wrt.  and 


• Here,  is a one-hot encoding of  which is 1 for the element 
corresponding to class  and zero elsewhere 


• e.g. for  and  we have 


• We can use GD/SGD with  and 


LCE = −
1
N ∑

n

y(n) log p(n) W b

y ∈ ℝK y
k

K = 6 y(t) = 2 y(t) = [0 0 1 0 0 0]⊤

∇WLCE ∇bLCE

See Murphy p346 for the  derivation. There are differences in notation, and 
Murphy’s gradient is the transpose of mine.


 What is the shape of this matrix? Can you tell from sight what  is?


∇WLCE

∇bLCE

∇WLCE =
1
N [∑

n

xn(p(n) − y(n))⊤]
⊤



Digit classification on MNIST

• MNIST dataset has 60k images (50k train, 10k test)


• Images are  so can vectorise to get 


• Each image is labelled as a digit 0-9 so 


• Let’s perform multinomial logistic regression with L1 regularisation


• Classify according to most probable class


• Test accuracy: 89.4% (or test error: 10.6%)

28 × 28 x ∈ ℝ784

y ∈ ℤ+
<10 https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png

These are the 
columns of 


 displayed as images
W

Inspired by https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html



A note on linear separability 

• If training data isn’t linearly separable, a linear classifier can’t produce a 
decision boundary that perfectly classifies the training data


• You can still get good solutions if a hyperplane can separate most data


• If it can’t then a linear classifier won’t be any good :(



Hyperparameters again!

• We’ve seen learning rates, regularisation parameters… there will be more!


• We can tune these by:


1. Creating a dedicated validation set, separate from train and test


2. Grid searching across hyperparameters to maximise validation 
performance 


• But this reduces the amount of data we have for actual training 


• Also different train/val splits might give us noticeably different models



-fold cross-validationk

• We have been using the validation set for model selection  

• Specifically, we have been training models with different hyperparameters and 
picking the one that maximises some score on validation


• We can instead perform model selection by looking at cross-validation 
performance. This does not require us to have a dedicated validation set



5-fold cross validation

Inspiration: https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation

Dataset

Train Test

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Train on , evaluate on {Q1, Q2, Q3, Q4} Q0

Train on , evaluate on {Q0, Q2, Q3, Q4} Q1

Train on , evaluate on {Q0, Q1, Q3, Q4} Q2

Train on , evaluate on {Q0, Q1, Q2, Q4} Q3

Train on , evaluate on {Q0, Q1, Q2, Q3} Q4

Then take average performance across  Q0, Q1, Q2, Q3, Q4, Q5

https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation


Grid search with -fold cross validationk

• Perform -fold cross-validation for each element in the grid


• This gives you your tuned hyperparameters


• Then train a final model with these  
hyperparameters on all of the training data

k

α = 0

α = 1

β = 1 β = 10

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4



Summary

• We have found out how to optimise the weights of linear classifiers for binary 
classification using the perceptron algorithm, and through logistic regression


• We have learnt how to modify linear classifiers for multi-class classification


• We have seen some failure modes of linear classifiers applied directly to data


• We have looked at cross-validation as an alternative to having a dedicated 
validation set, and how we can combine it with grid search for tuning


