
Elliot J. Crowley, 27th February 2023

Data Analysis and Machine
Learning 4
Week 6: Linear Classification

• We learned about different types of linear regression and regularisers

• We looked at convex functions and gradient descent

Recap

f(x) = ̂y = w⊤ϕ(x)

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

Warning: change in notation!

• We have previously included the bias term in the weight vector

• This makes the maths for linear regression much nicer

• When considering classifiers it’s better to separate the weights from the bias

• From now on we will write our linear model as

• The weight vector does not contain the bias

b w

f(x) = w⊤ϕ(x) + b

Supervised Learning
• We want a model that takes in a new data point and outputs a prediction

• For the model to be accurate it must first learn from training data

• Often, models are parameterised functions and learning = finding the best parameters

• Training data is a set of existing data points that have been labelled

• The label says what the prediction for that data point should be

new 
data model prediction

Two canonical problems in supervised learning

• Regression: Given input data, predict a continuous output

• Classification: Given input data, predict a distinct category

cat dog

Classification

The classification problem

• Our training set consists of data point-target pairs

• Data points are column vectors, targets are class labels

• i.e. each data point has been labeled as belonging to 1 of classes

• Objective: We want a model that classifies our training data correctly

• Objective: We want a model that classifies our held-out test data correctly

N {x(n), y(n)}N−1
n=0

x ∈ ℝD

y ∈ ℤ+
<K = {0,1,…, K − 1}

K

The most common way to quantify classification performance is accuracy
 

This is simply the fraction or % of classifications that are correct

Linear Classifiers

Linear classifiers

• These are linear models

• For now we will consider untransformed features so

• For now we will consider binary classification: or

• is a classification score: we decide how it is used to make a class
prediction

• e.g. we could use a thresholding function like

f(x) = w⊤ϕ(x) + b

f(x) = w⊤x + b

y ∈ {0,1} y ∈ {−1,1}

f(x) ∈ ℝ1

̂y

̂y = {1 if f(x) > 0
0 if f(x) < 0

Why linear models?

• They are simple and intuitive

• They are interpretable

• They use vectors and matrices (computers love these)

• They work well in many scenarios

Slide inspired by https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition

https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition

Linear classifier decision boundary in 2D

• Consider a training set with and

• We have where and

• Predictions are determined using

• is a line which forms the decision boundary of the classifier

{x(n), y(n)}N−1
n=0 x ∈ ℝ2 y ∈ {0,1}

f(x) = w⊤x + b x = [x0 x1] w = [w0 w1]⊤

̂y = {1 if f(x) > 0
0 if f(x) < 0

f(x) = 0

Decision boundary are hyperplanes

For the decision boundary of a linear classifier is in

• In 1D the decision boundary is a point

• In 2D the decision boundary is a line

• In 3D the decision boundary is a plane

• In 4D and above the decision boundary is a hyperplane we can’t visualise but
all the maths still works (:

x ∈ ℝD D − 1

. ?

Linear separability
Our training data is linearly separable if we are able to draw a hyperplane that
completely separates points from both classes

YES YES

NO NO

Learning the weights of linear classifiers

• For the classifier to be any good we have to learn , and on training data

• Once that is done we can throw away the training set

• We will now cover two different learning methods:

1. The perceptron algorithm (obsolete but foundational)

2. Logistic regression (popular and used a lot)

w b

The Perceptron algorithm

The Perceptron algorithm for training a linear classifier

We have a linearly separable training set with and

We want s.t.

• Initialise as and as

• Shuffle, then cycle through

• If is misclassified then ,

• Stop when all the data is classified correctly

{x(n), y(n)}N−1
n=0 x ∈ ℝD y ∈ {−1,1}

f(x(n)) = w⊤x(n) + b ̂y(n) = {1 if f(x(n)) ≥ 0
−1 if f(x(n)) < 0

∀n

w w = 0 b b = 0

{x(n), y(n)}N−1
n=0

x(n) w ← w + α y(n)x(n) b ← b + α y(n)

Note classes are
-1 and 1 here for

mathematical
ease

Perceptron Learning: Update 0

Perceptron Learning: Update 1

Perceptron Learning: Update 2

Perceptron loss

• Can we phrase the perceptron algorithm as minimising some loss function?

• Yes. It is minimising a hinge loss using stochastic gradient descent (SGD)

The optimisation problem is to solve

 minimise

w,b
Lhinge

Lhinge =
1
N ∑

n

max(0, − y(n) f(x(n)))

Stochastic gradient descent (SGD)

• SGD is identical to GD except at each step the gradient is computed on a
random subset of the data; for the perceptron this is a single data point

• Recall in GD the update is

• Plugging into update gives

wt=i+1 = wt=i − α∇wL(wt=i)

L̃hinge = max(0, − y(n) f(x(n))) = max(0, − y(n)(w⊤x(n) + b))
∇wL̃hinge = {−y(n)x(n) if y(n) f(x(n)) < 0

0 if y(n) f(x(n)) > 0

wt=i+1 = wt=i + {αy(n)x(n) if y(n) f(x(n)) < 0
0 if y(n) f(x(n)) > 0

This is the same as
the perceptron weight

update!

We also have a bias!

• The bias needs to be updated too. This happens alongside each weight
update

• The update for the bias is

• Plugging into update gives

bt=i+1 = bt=i − α∇wL(wt=i)

L̃hinge = max(0, − y(n)(w⊤x(n) + b))
∇bL̃hinge = {−y(n) if y(n) f(x(n)) < 0

0 if y(n) f(x(n)) > 0

bt=i+1 = bt=i + {αy(n) if y(n) f(x(n)) < 0
0 if y(n) f(x(n)) > 0

This is the the same
as the perceptron bias

update!

Logistic Regression

Classification as regression

• Consider a training set where and

• Let’s treat as continuous : it just happens to be 0/1 for training data

• We can perform linear regression to predict this “continuous”
label

• This can be achieved by e.g. minimising

• Can we predict something more meaningful?

{x(n), y(n)}N−1
n=0 x ∈ ℝD y ∈ {0,1}

y y ∈ ℝ1

f(x) = w⊤x + b

LMSE =
1
N ∑

n

(y(n) − w⊤x(n) − b)2

Logistic Regression

• Probabilities are meaningful as they quantify uncertainty

• We want to predict : the probability that belongs to class 1

• We can’t predict this with our linear model however

• This is because probabilities must lie between 0 and 1 and is unbounded

• Let’s instead predict an unbounded quantity that is related to

p(y = 1 |x) x

f(x) = w⊤x + b

f(x)

p(y = 1 |x)

f(x) = log
p(y = 1 |x)

1 − p(y = 1 |x)
The log-odds, or logit

The sigmoid function

• In logistic regression our model predicts log-odds from data

•
 
We can rearrange to express in terms of log-oddsp(y = 1 |x)

f(x) = log
p(y = 1 |x)

1 − p(y = 1 |x)

p(y = 1 |x) =
1

1 + e−f(x)
= σ(f(x)) = σ(w⊤x + b)

 is the sigmoid function.

It squashes numbers to be between 0 and 1

σ

Making decisions

• We can convert log-odds to probabilities through

• It follows that as there are only two classes

• How do we make a class prediction ?

• The obvious approach is

• But what if represents a patient, class 1/0 are cancer/not-cancer diagnoses
and you get ?

p(y = 1 |x) = σ(f(x))

p(y = 0 |x) = 1 − σ(f(x))

̂y

̂y = {1 if p(y = 1 |x) ≥ 0.5
0 if p(y = 1 |x) < 0.5

x
p(y = 1 |x) = 0.49

Learning weights using Maximum likelihood estimation (MLE)

• We can write

• The likelihood of your training data is a sensible quantity to maximise

• Maximising is the same as minimising

p(y |x) = σ(f(x))y(1 − σ(f(x))1−y

ℓ = ∏
n

p(y(n) |x(n)) = ∏
n

σ(f(x(n)))y(n)(1 − σ(f(x(n)))1−y(n)

ℓ −
1
N

log ℓ

−
1
N

log ℓ = −
1
N ∑

n
[y(n) log σ(f(x(n))) + (1 − y(n))log(1 − σ(f(x(n)))]

Independence assumption

Cross-entropy loss

• This quantity is the cross entropy loss (averaged across data item)

• Minimising this is equivalent to maximising likelihood

• Cross-entropy is a quantity that crops up in information theory

• It measures how much the probabilities produced by our model differ from the
true probabilities (so low = good)

LCE = −
1
N ∑

n
[y(n) log σ(f(x(n))) + (1 − y(n))log(1 − σ(f(x(n)))]

Cross-entropy loss

• This loss is convex for a linear classifier

• We can use e.g. GD or SGD to to solve using:

 and

LCE = −
1
N ∑

n
[y(n) log σ(f(x(n))) + (1 − y(n))log(1 − σ(f(x(n)))]

minimise
w,b

LCE

∇wLCE = −
1
N ∑

n
(y(n) − σ(f(x)))x(n) ∇bLCE = −

1
N ∑

n
(y(n) − σ(f(x)))

Decision boundary for logistic regression

• We have placed a sigmoid function over a linear model to turn its log-odds
outputs into probabilities:

• Classifications are usually made with

• The decision boundary is at

• when which is a still a hyperplane

• We could rewrite the classification rule as

p(y = 1 |x) = σ(w⊤x + b)

̂y = {1 if p(y = 1 |x) ≥ 0.5
0 if p(y = 1 |x) < 0.5

p(y = 1 |x) = σ(w⊤x + b) = 0.5

σ(w⊤x + b) = 0.5 w⊤x + b = 0

̂y = {1 if f(x) ≥ 0
0 if f(x) < 0

Titanic Dataset
• We can use historical data about passengers to learn a linear classifier to

predict survival using logistic regression

• If we standardise data then the weights we learn are interpretable

• Survival more probable for people who are in first class, female, young

For “Sex”, male has been mapped to 0 and female to 1 arbitrarily

w = [−0.97 1.27 −0.52 −0.27 −0.03 0.16]⊤

Gets 80% on held-out data so is a reasonable model

Pclass Sex Age SibSp Parch Fare

Perceptron vs. Logistic regression

• Both give linear classifiers

• The main difference is in the classification loss used for optimisation

• In logistic regression the quantities being predicted, and the loss are meaningful

• We can add a regularisation term to either loss as before

• This could be L2 or L1 (or whatever!). L2 is most common

f(x) = w⊤x + b

Ltotal = Lclf⏟
classification

+
λ
2

∥w∥2

regularisation

Remember that the bias
goes unregularised

Multi-class classification with linear classifiers

We have with .

There are three different approaches to solving this:

1. We could learn one-vs-rest classifiers: and classify
points according to the highest score

2. We could learn one-vs-one classifiers and classify points
according to the majority vote

3. We could make our classifier output a vector where each element is a score
for a different class and select the class with the highest score

{x(n), y(n)}N−1
n=0 y ∈ ℤ+

<K = {0,1,…, K − 1}

K f0(x), f1(x), …, fK−1(x)

(K(K − 1))/2

Multi-class linear classifiers

• In the binary case where and

• For our classifier to output a score for each of classes we can:

1. Replace the vector with a matrix

2. Replace the bias vector with a vector

• This gives us where

f(x) = w⊤x + b x ∈ ℝD f(x) ∈ ℝ1

K

w ∈ ℝD W ∈ ℝK×D

b ∈ ℝ1 b ∈ ℝK

f(x) = Wx + b f(x) ∈ ℝK

Like having
 classifiers

side-by-side
Kx bWf(x) +=

Multinomial logistic regression

• Logistic regression naturally extends to multi-class problems

• In the binary setting, we only had to consider in terms of

• In the multi-class setting we need to consider all the different probabilities

• Let’s store the probabilities in a vector

• We will write as some function of — the vector of logits

p(y = 1 |x) f(x)

p

p S f(x)

p =

p(y = 0 |x)
p(y = 1 |x)
p(y = 2 |x)

⋮
p(y = K − 1 |x)

= S(f(x))

Softmax

• must sum to 1 so we need a function that normalises

• We will use the softmax function which squashes so it sums to 1

p f(x)

S f(x)

S(z) = S(

z0
z1
⋮

zK−1

) =

exp z0

∑K−1
k=0 exp zk

exp z1

∑K−1
k=0 exp zk

⋮
exp zK−1

∑K−1
k=0 exp zk

Learning for multinominal logistic regression

• We can minimise cross-entropy wrt. and

• Here, is a one-hot encoding of which is 1 for the element
corresponding to class and zero elsewhere

• e.g. for and we have

• We can use GD/SGD with and

LCE = −
1
N ∑

n

y(n) log p(n) W b

y ∈ ℝK y
k

K = 6 y(t) = 2 y(t) = [0 0 1 0 0 0]⊤

∇WLCE ∇bLCE

See Murphy p346 for the derivation. There are differences in notation, and
Murphy’s gradient is the transpose of mine.

 What is the shape of this matrix? Can you tell from sight what is?

∇WLCE

∇bLCE

∇WLCE =
1
N [∑

n

xn(p(n) − y(n))⊤]
⊤

Digit classification on MNIST

• MNIST dataset has 60k images (50k train, 10k test)

• Images are so can vectorise to get

• Each image is labelled as a digit 0-9 so

• Let’s perform multinomial logistic regression with L1 regularisation

• Classify according to most probable class

• Test accuracy: 89.4% (or test error: 10.6%)

28 × 28 x ∈ ℝ784

y ∈ ℤ+
<10 https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png

These are the
columns of

 displayed as images
W

Inspired by https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html

A note on linear separability

• If training data isn’t linearly separable, a linear classifier can’t produce a
decision boundary that perfectly classifies the training data

• You can still get good solutions if a hyperplane can separate most data

• If it can’t then a linear classifier won’t be any good :(

Hyperparameters again!

• We’ve seen learning rates, regularisation parameters… there will be more!

• We can tune these by:

1. Creating a dedicated validation set, separate from train and test

2. Grid searching across hyperparameters to maximise validation
performance

• But this reduces the amount of data we have for actual training

• Also different train/val splits might give us noticeably different models

-fold cross-validationk

• We have been using the validation set for model selection

• Specifically, we have been training models with different hyperparameters and
picking the one that maximises some score on validation

• We can instead perform model selection by looking at cross-validation
performance. This does not require us to have a dedicated validation set

5-fold cross validation

Inspiration: https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation

Dataset

Train Test

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Train on , evaluate on {Q1, Q2, Q3, Q4} Q0

Train on , evaluate on {Q0, Q2, Q3, Q4} Q1

Train on , evaluate on {Q0, Q1, Q3, Q4} Q2

Train on , evaluate on {Q0, Q1, Q2, Q4} Q3

Train on , evaluate on {Q0, Q1, Q2, Q3} Q4

Then take average performance across Q0, Q1, Q2, Q3, Q4, Q5

https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation

Grid search with -fold cross validationk

• Perform -fold cross-validation for each element in the grid

• This gives you your tuned hyperparameters

• Then train a final model with these  
hyperparameters on all of the training data

k

α = 0

α = 1

β = 1 β = 10

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Q0 Q1 Q2 Q3 Q4

Summary

• We have found out how to optimise the weights of linear classifiers for binary
classification using the perceptron algorithm, and through logistic regression

• We have learnt how to modify linear classifiers for multi-class classification

• We have seen some failure modes of linear classifiers applied directly to data

• We have looked at cross-validation as an alternative to having a dedicated
validation set, and how we can combine it with grid search for tuning

