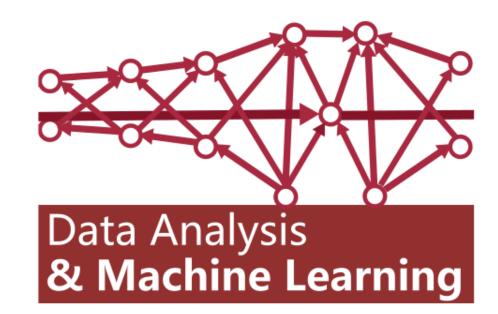
Data Analysis and Machine Learning 4 Week 6: Linear Classification

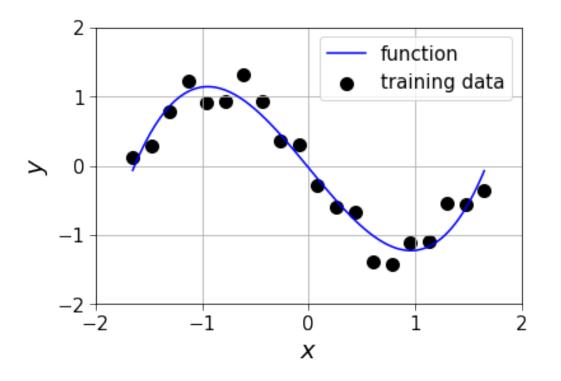
Elliot J. Crowley, 27th February 2023

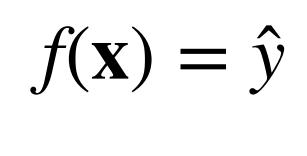


of EDINBURGH

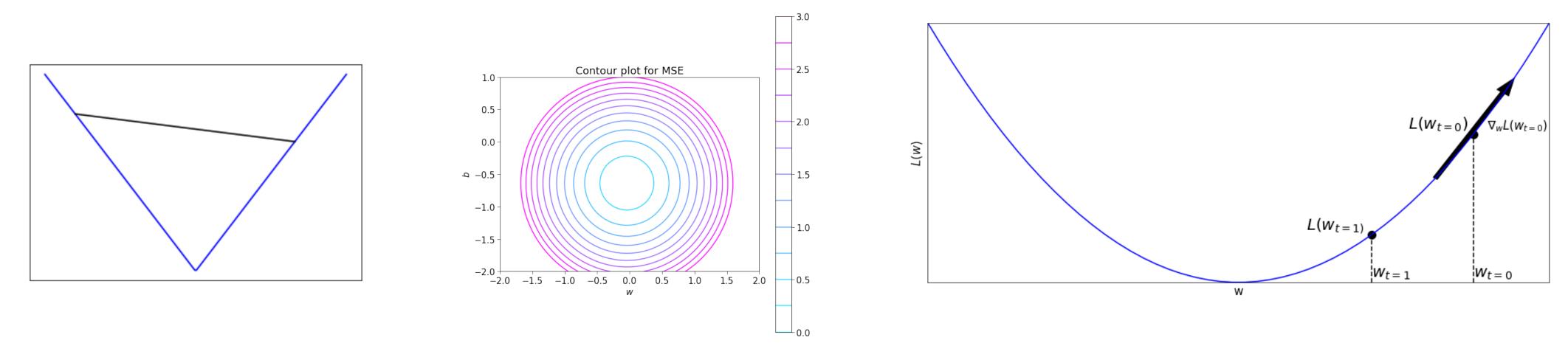
Recap

• We learned about different types of linear regression and regularisers





We looked at convex functions and gradient descent



 $f(\mathbf{x}) = \hat{y} = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x})$

 $L_{ridge}(\mathbf{w}) = \|\mathbf{y} - \mathbf{\Phi}\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|^2$

SE

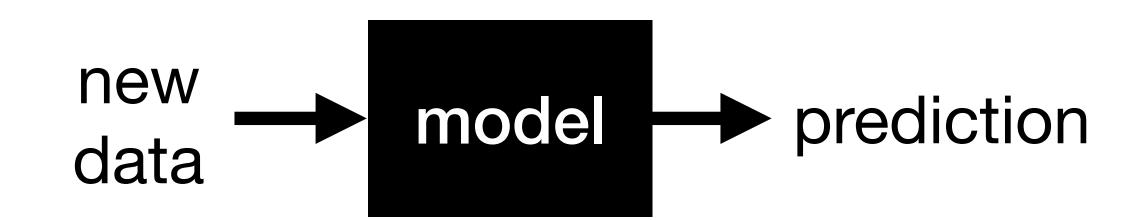
regularisation

Warning: change in notation!

- We have previously included the bias term b in the weight vector ${f w}$
- This makes the maths for linear regression much nicer
- When considering classifiers it's better to separate the weights from the bias
- From now on we will write our linear model as $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + b$
- The weight vector does not contain the bias

Supervised Learning

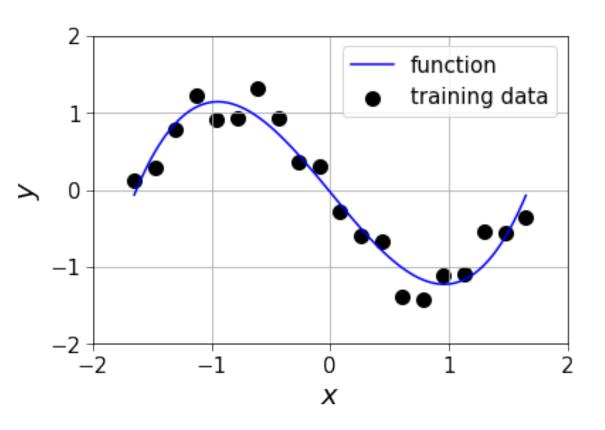
• We want a model that takes in a new data point and outputs a prediction



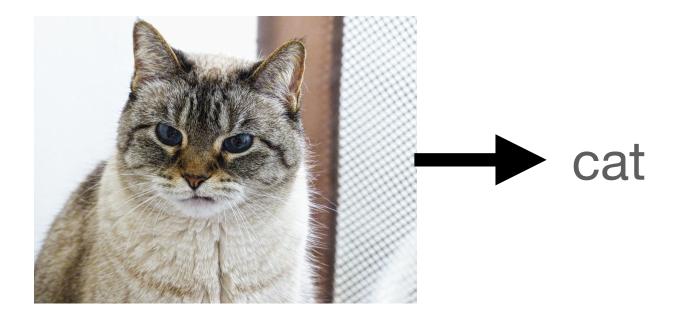
- For the model to be accurate it must first learn from training data
- Often, models are parameterised functions and learning = finding the best parameters
- Training data is a set of existing data points that have been **labelled**
- The label says what the prediction for that data point should be

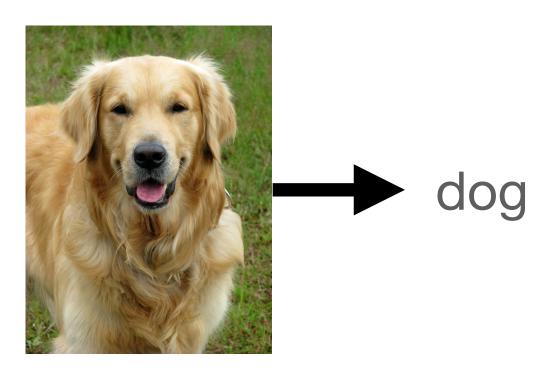
Two canonical problems in supervised learning

Regression: Given input data, predict a continuous output



Classification: Given input data, predict a distinct category





Classification

The classification problem

- Our training set consists of N data point-target pairs $\{\mathbf{x}^{(n)}, y^{(n)}\}_{n=0}^{N-1}$
- Data points $\mathbf{x} \in \mathbb{R}^{D}$ are column vectors, targets are class labels $y \in \mathbb{Z}_{< K}^{+} = \{0, 1, \dots, K-1\}$
- i.e. each data point has been labeled as belonging to 1 of K classes
- Objective: We want a model that classifies our training data correctly
- **Objective:** We want a model that classifies our held-out test data correctly

- The most common way to quantify classification performance is accuracy
 - This is simply the fraction or % of classifications that are correct

Linear Classifiers

Linear classifiers

- These are linear models $f(\mathbf{x}) = \mathbf{w}^{\top}$
- For now we will consider untransformed features so $f(\mathbf{x}) = \mathbf{w}^{T}\mathbf{x} + b$
- For now we will consider **binary classification**: $y \in \{0,1\}$ or $y \in \{-1,1\}$
- $f(\mathbf{x}) \in \mathbb{R}^1$ is a classification score: we decide how it is used to make a class prediction \hat{y}
- e.g. we could use a thresholding full

$$\phi(\mathbf{x}) + b$$

nction like
$$\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) > 0 \\ 0 & \text{if } f(\mathbf{x}) < 0 \end{cases}$$

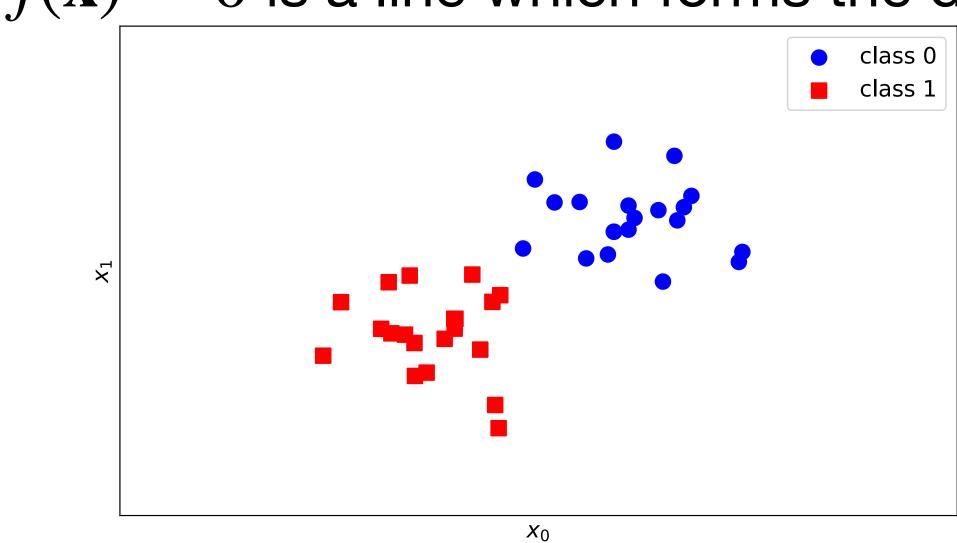
Why linear models?

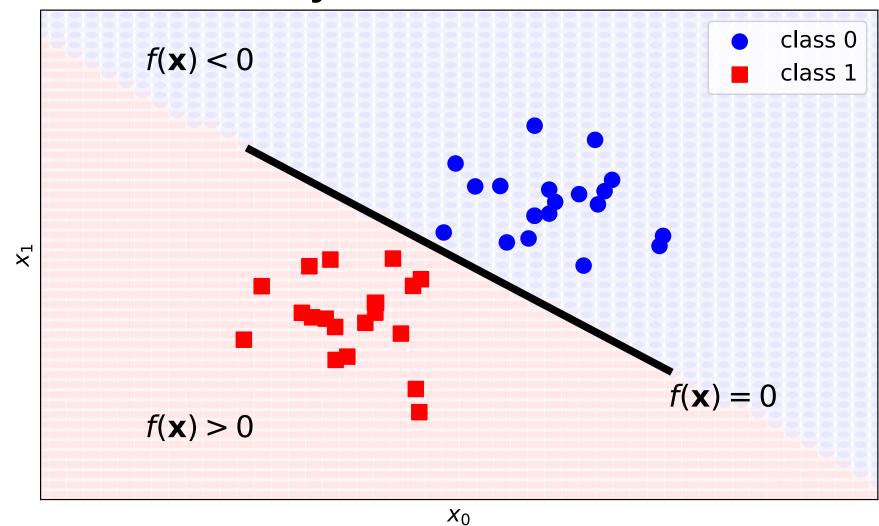
- They are simple and intuitive
- They are interpretable
- They use vectors and matrices (computers love these)
- They work well in many scenarios

Slide inspired by https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition

Linear classifier decision boundary in 2D

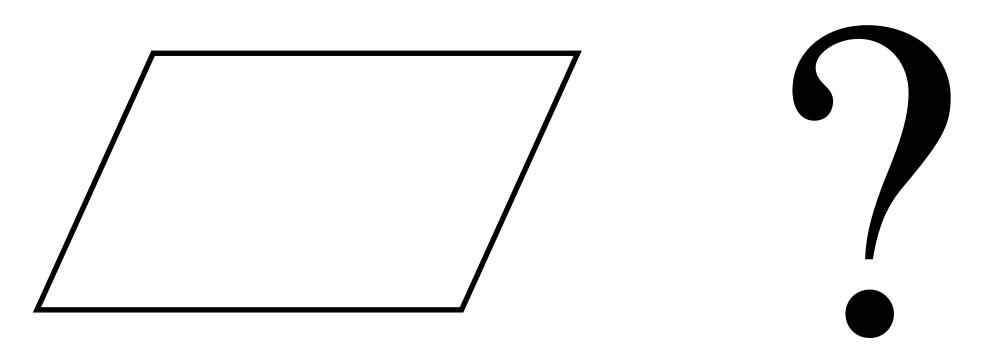
- Consider a training set $\{\mathbf{x}^{(n)}, y^{(n)}\}_{n=0}^{N-1}$ with $\mathbf{x} \in \mathbb{R}^2$ and $y \in \{0, 1\}$
- We have $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ where $\mathbf{x} = \begin{bmatrix} x_0 & x_1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix}^{\mathsf{T}}$
- Predictions are determined using $\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) > 0 \\ 0 & \text{if } f(\mathbf{x}) < 0 \end{cases}$
- $f(\mathbf{x}) = 0$ is a line which forms the decision boundary of the classifier





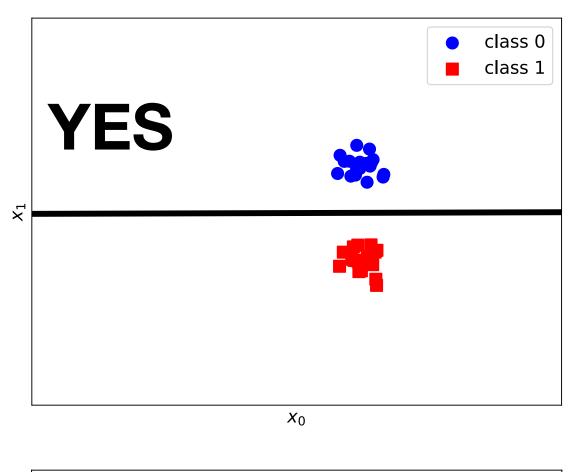
Decision boundary are hyperplanes

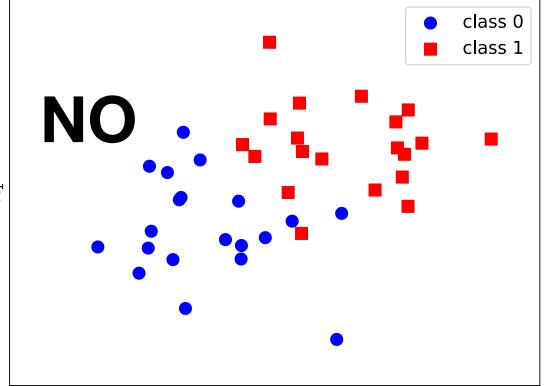
- For $\mathbf{x} \in \mathbb{R}^D$ the decision boundary of a linear classifier is in D-1
- In 1D the decision boundary is a point
- In 2D the decision boundary is a line
- In 3D the decision boundary is a plane
- In 4D and above the decision boundary is a hyperplane we can't visualise but all the maths still works (:



Linear separability

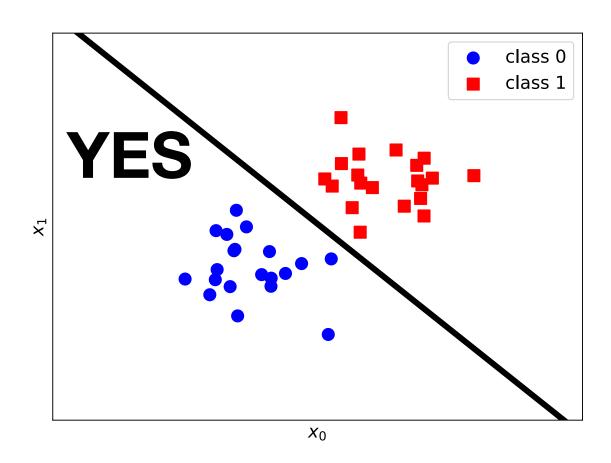
completely separates points from both classes

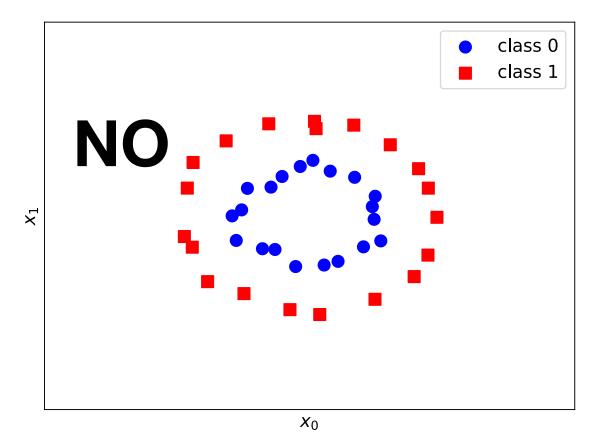




 X_0

Our training data is linearly separable if we are able to draw a hyperplane that





Learning the weights of linear classifiers

- For the classifier to be any good we have to learn \mathbf{w} , b and on training data
- Once that is done we can throw away the training set
- We will now cover two different learning methods:
 - 1. The perceptron algorithm (obsolete but foundational)
 - 2. Logistic regression (popular and used a lot)

The Perceptron algorithm

The Perceptron algorithm for training a linear classifier

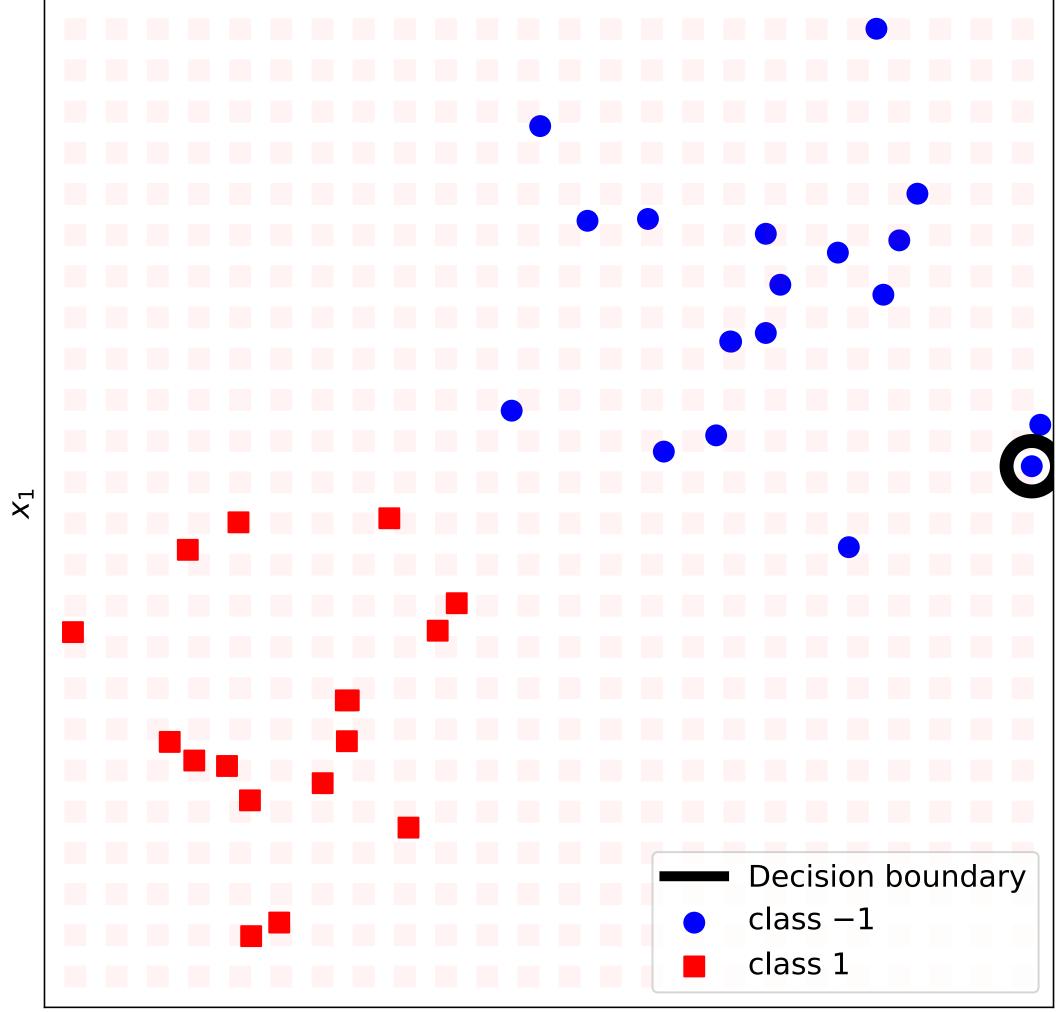
We have a linearly separable training set
$$\{\mathbf{x}^{(n)}, y^{(n)}\}_{n=0}^{N-1}$$
 with $\mathbf{x} \in \mathbb{R}^{D}$ and $y \in \{-1, 1, 1\}$
We want $f(\mathbf{x}^{(n)}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)} + b$ s.t. $\hat{y}^{(n)} = \begin{cases} 1 & \text{if } f(\mathbf{x}^{(n)}) \ge 0 \\ -1 & \text{if } f(\mathbf{x}^{(n)}) < 0 \end{cases}$ $\forall n$
We want $f(\mathbf{x}^{(n)}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)} + b$ s.t. $\hat{y}^{(n)} = \begin{cases} 1 & \text{if } f(\mathbf{x}^{(n)}) \ge 0 \\ -1 & \text{if } f(\mathbf{x}^{(n)}) < 0 \end{cases}$ $\forall n$

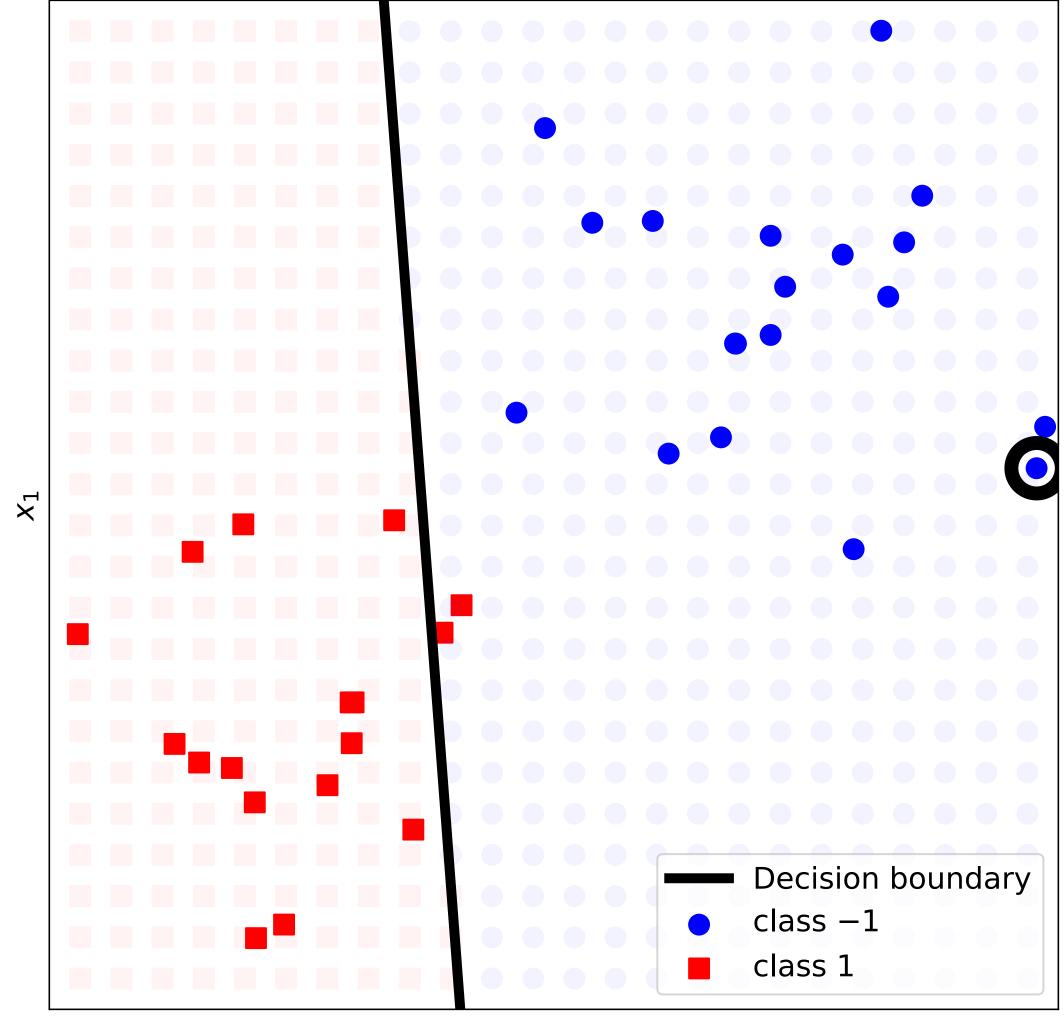
- Initialise w as w = 0 and b as b = 0
- Shuffle, then cycle through $\{\mathbf{x}^{(n)}, y^{(n)}\}_{n=0}^{N-1}$

• If $\mathbf{x}^{(n)}$ is misclassified then $\mathbf{w} \leftarrow \mathbf{w} + \alpha y^{(n)} \mathbf{x}^{(n)}$, $b \leftarrow b + \alpha y^{(n)}$

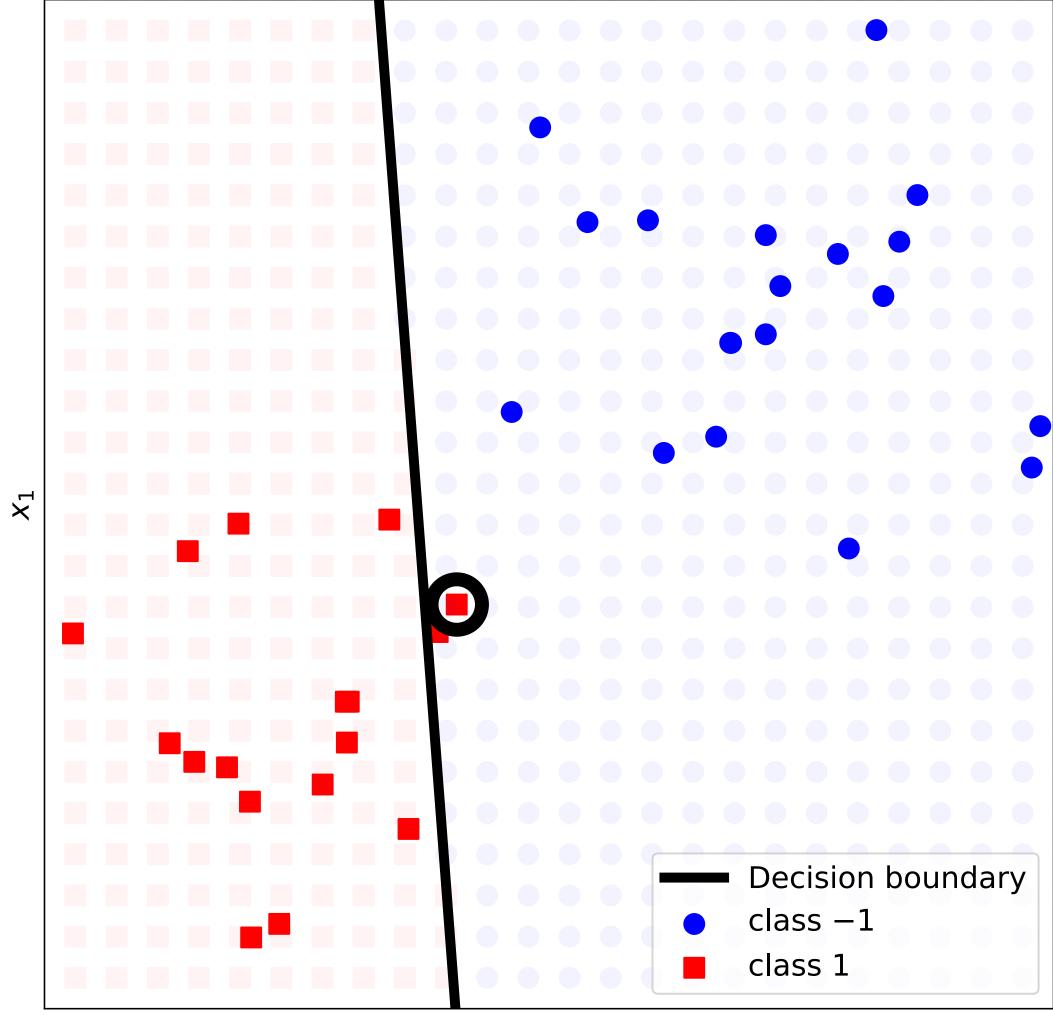
Stop when all the data is classified correctly

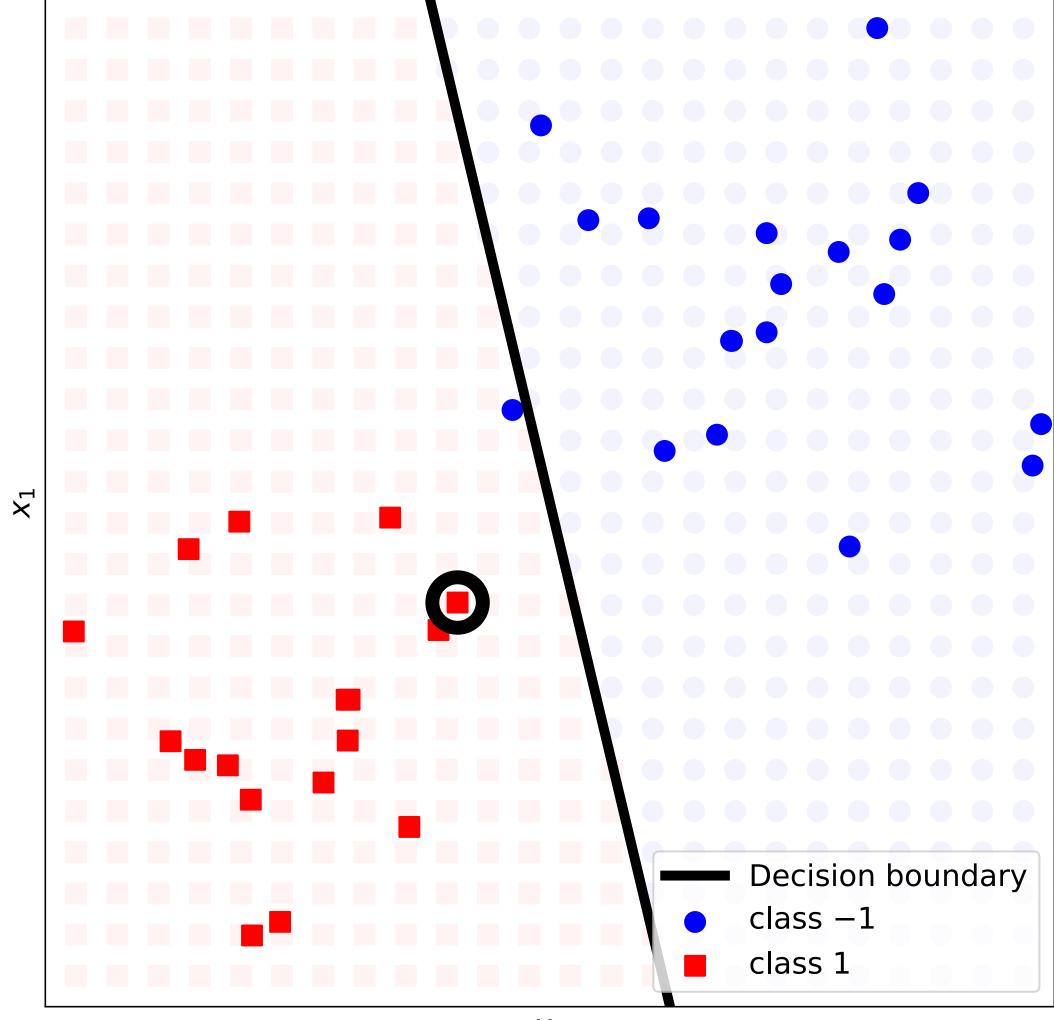
Perceptron Learning: Update 0



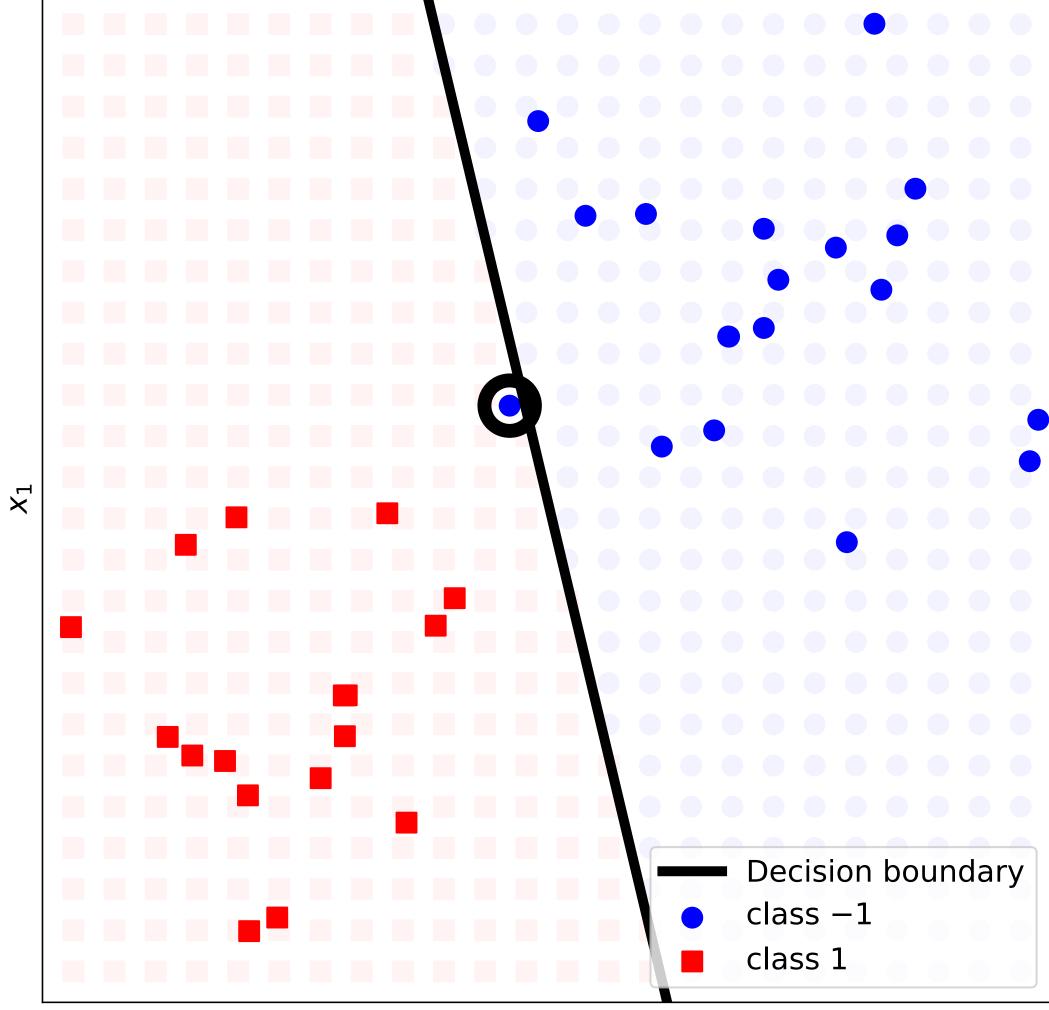


Perceptron Learning: Update 1

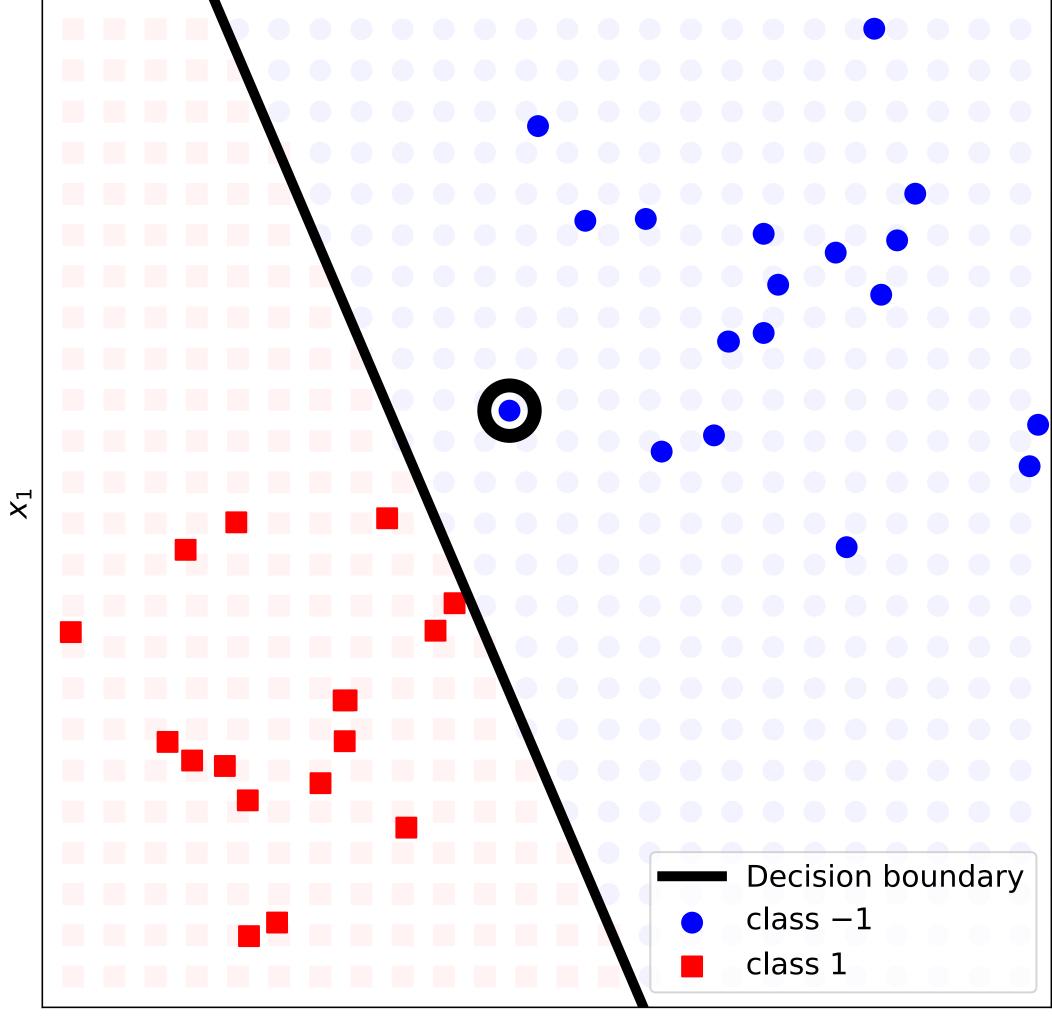




Perceptron Learning: Update 2



*X*0



Perceptron loss

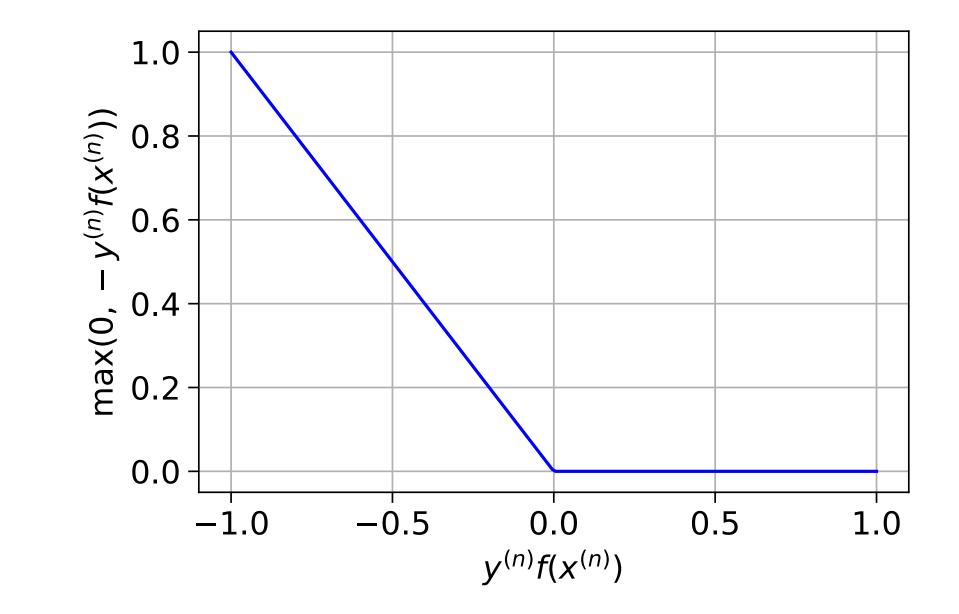
- \bullet

$$L_{hinge} = \frac{1}{N} \sum_{n} \max\left(0, -y^{(n)}f(\mathbf{x}^{(n)})\right)$$

The optimisation problem is to solve minimise L_{hinge} **w**,*b*

Can we phrase the perceptron algorithm as minimising some loss function?

Yes. It is minimising a hinge loss using stochastic gradient descent (SGD)



Stochastic gradient descent (SGD)

- SGD is identical to GD except at each step the gradient is computed on a random subset of the data; for the perceptron this is a single data point
- R

ecall in GD the update is
$$\mathbf{w}_{t=i+1} = \mathbf{w}_{t=i} - \alpha \nabla_{\mathbf{w}} L(\mathbf{w}_{t=i})$$

 $\tilde{L}_{hinge} = \max\left(0, -y^{(n)}f(\mathbf{x}^{(n)})\right) = \max\left(0, -y^{(n)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)} + b)\right)$
 $\nabla_{\mathbf{w}}\tilde{L}_{hinge} = \begin{cases} -y^{(n)}\mathbf{x}^{(n)} & \text{if } y^{(n)}f(\mathbf{x}^{(n)}) < 0\\ 0 & \text{if } y^{(n)}f(\mathbf{x}^{(n)}) > 0 \end{cases}$

Plugging into update gives

$$\mathbf{w}_{t=i+1} = \mathbf{w}_{t=i} + \begin{cases} \alpha y^{(n)} \mathbf{x}^{(n)} & \text{if } y^{(n)} f(\mathbf{x}) \\ 0 & \text{if } y^{(n)} f(\mathbf{x}) \end{cases}$$

 $(\mathbf{x}^{(n)}) < 0$ $(\mathbf{x}^{(n)}) > 0$

This is the same as the perceptron weight update!

We also have a bias!

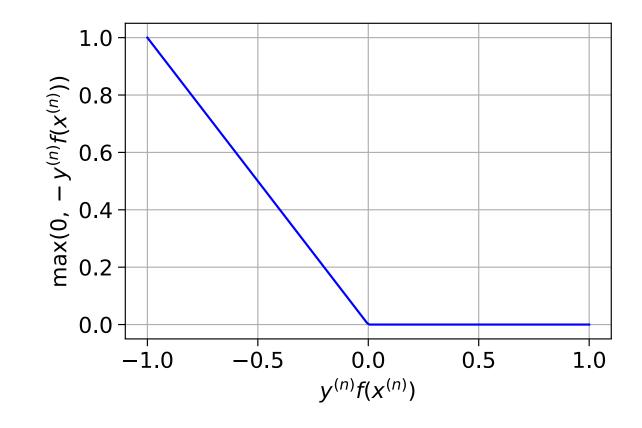
- The bias needs to be updated too. This happens alongside each weight update
- The update for the bias is $b_{t=i+1} =$

$$\begin{split} \tilde{L}_{hinge} &= \max\left(0, -y^{(n)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)} + b)\right) \\ \nabla_{b}\tilde{L}_{hinge} &= \begin{cases} -y^{(n)} & \text{if } y^{(n)}f(\mathbf{x}^{(n)}) < \\ 0 & \text{if } y^{(n)}f(\mathbf{x}^{(n)}) > \end{cases} \end{split}$$

• Plugging into update gives $b_{t=i+1} = b_{t=i} + \begin{cases} \alpha y^{(n)} & \text{if } y^{(n)} f(\mathbf{x}^{(n)}) < 0\\ 0 & \text{if } y^{(n)} f(\mathbf{x}^{(n)}) > 0 \end{cases}$

$$b_{t=i} - \alpha \nabla_{\mathbf{w}} L(\mathbf{w}_{t=i})$$

< 0> 0



This is the the same as the perceptron bias update!

Logistic Regression

Classification as regression

- Consider a training set $\{\mathbf{x}^{(n)}, y^{(n)}\}_{n=0}^{N-1}$ where $\mathbf{x} \in \mathbb{R}^D$ and $y \in \{0, 1\}$
- Let's treat y as continuous $y \in \mathbb{R}^1$: it just happens to be 0/1 for training data
- We can perform linear regression $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$ to predict this "continuous" label
- This can be achieved by e.g. minimis
- Can we predict something more meaningful?

sing
$$L_{MSE} = \frac{1}{N} \sum_{n} (y^{(n)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)} - b)^2$$

Logistic Regression

- Probabilities are meaningful as they quantify uncertainty
- We want to predict $p(y = 1 | \mathbf{x})$: the probability that \mathbf{x} belongs to class 1
- We can't predict this with our linear model $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ however
- This is because probabilities must lie between 0 and 1 and $f(\mathbf{x})$ is unbounded
- Let's instead predict an unbounded quantity that is related to $p(y = 1 | \mathbf{x})$

$$f(\mathbf{x}) = \log \frac{p(y = 1 | \mathbf{x})}{1 - p(y = 1 | 1)}$$

The log-odds, or logit

The sigmoid function

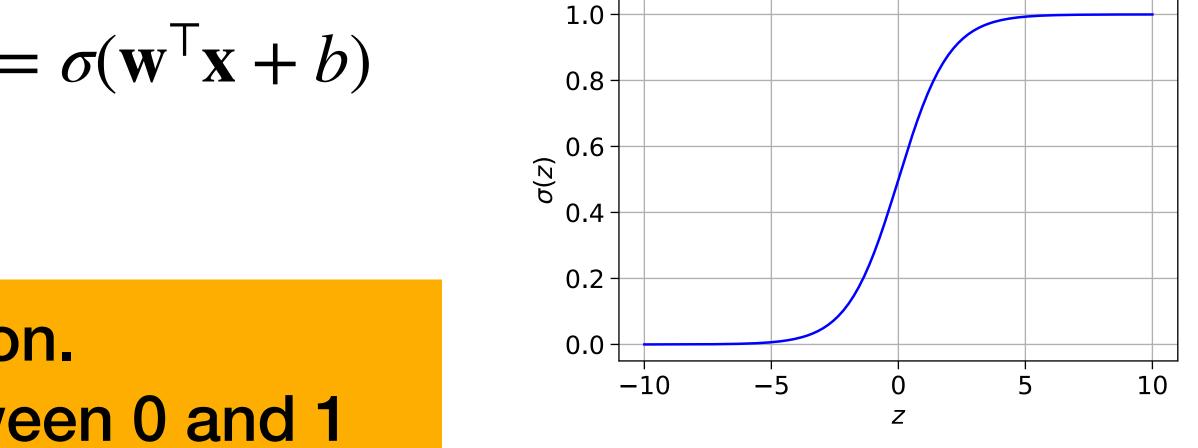
In logistic regression our model predicts log-odds from data

$$f(\mathbf{x}) = \log \frac{p(y = 1 | \mathbf{x})}{1 - p(y = 1 | \mathbf{x})}$$

• We can rearrange to express $p(y = 1 | \mathbf{x})$ in terms of log-odds

$$p(\mathbf{y} = 1 | \mathbf{x}) = \frac{1}{1 + e^{-f(\mathbf{x})}} = \sigma(f(\mathbf{x})) =$$

 σ is the sigmoid function. It squashes numbers to be between 0 and 1



Making decisions

- We can convert log-odds to probabilities through $p(y = 1 | \mathbf{x}) = \sigma(f(\mathbf{x}))$ • It follows that $p(y = 0 | \mathbf{x}) = 1 - \sigma(f(\mathbf{x}))$ as there are only two classes • How do we make a class prediction \hat{y} ?

- The obvious approach is $\hat{y} = \begin{cases} 1 & \text{if } p(y=1 \mid \mathbf{x}) \ge 0.5 \\ 0 & \text{if } p(y=1 \mid \mathbf{x}) < 0.5 \end{cases}$
- and you get $p(y = 1 | \mathbf{x}) = 0.49?$

But what if x represents a patient, class 1/0 are cancer/not-cancer diagnoses

Learning weights using Maximum likelihood estimation (MLE)

- We can write $p(y | \mathbf{x}) = \sigma(f(\mathbf{x}))^y (1 \sigma(f(\mathbf{x}))^y)$
- The likelihood of your training data is a sensible quantity to maximise

$$\mathscr{C} = \prod_{n} p(y^{(n)} | \mathbf{x}^{(n)}) = \prod_{n} \sigma(f(\mathbf{x}^{(n)}))^{y^{(n)}} (1 - \sigma(f(\mathbf{x}^{(n)}))^{1-y^{(n)}})^{1-y^{(n)}}$$

since assumption

• Maximising ℓ is the same as minimi

$$-\frac{1}{N}\log \ell = -\frac{1}{N}\sum_{n} \left[y^{(n)}\log\sigma(f(\mathbf{x}^{(n)})) + (1 - y^{(n)})\log(1 - \sigma(f(\mathbf{x}^{(n)})) \right]$$

$$-\sigma(f(\mathbf{x}))^{1-y}$$

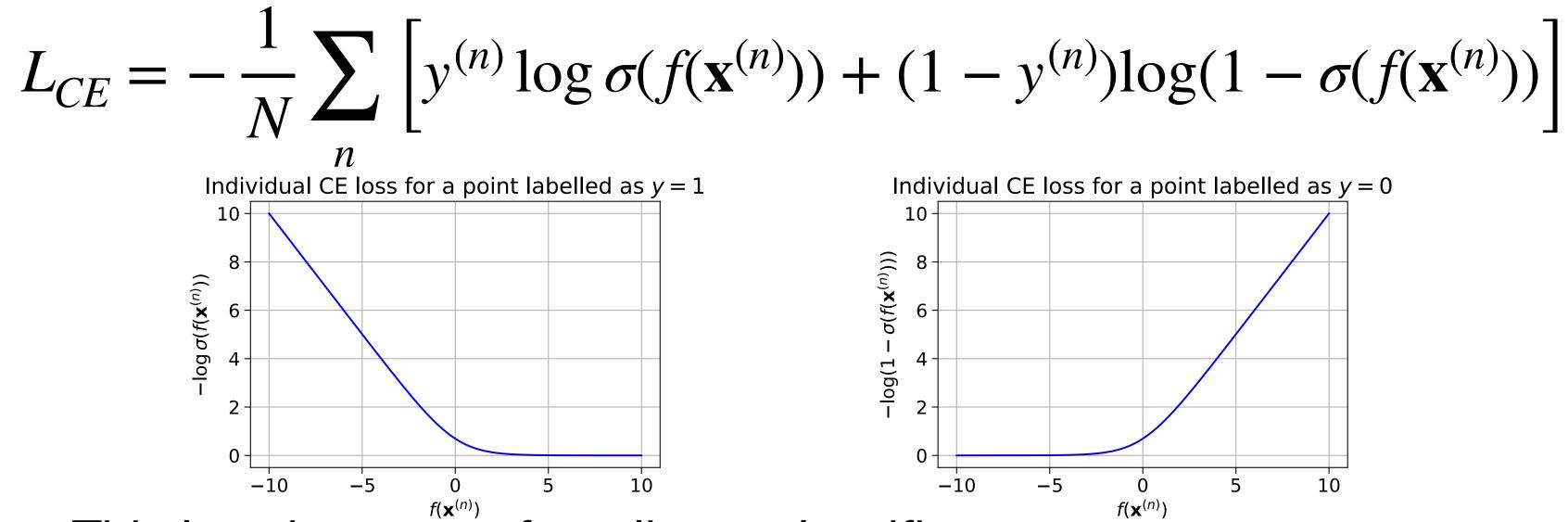
ising
$$-\frac{1}{N}\log \ell$$

Cross-entropy loss

$$L_{CE} = -\frac{1}{N} \sum_{n} \left[y^{(n)} \log \sigma(f(\mathbf{x}^{(n)})) + (1 - y^{(n)}) \log(1 - \sigma(f(\mathbf{x}^{(n)}))) \right]$$

- This quantity is the cross entropy loss (averaged across data item)
- Minimising this is equivalent to maximising likelihood
- Cross-entropy is a quantity that crops up in information theory
- It measures how much the probabilities produced by our model differ from the true probabilities (so low = good)

Cross-entropy loss



- This loss is convex for a linear classifier

We can use e.g. GD or SGD to to solve minimise
$$L_{CE}$$
 using:
 $\nabla_{\mathbf{w}}L_{CE} = -\frac{1}{N}\sum_{n} (y^{(n)} - \sigma(f(\mathbf{x}))) \mathbf{x}^{(n)} \text{ and } \nabla_{b}L_{CE} = -\frac{1}{N}\sum_{n} (y^{(n)} - \sigma(f(\mathbf{x})))$

Decision boundary for logistic regression

- We have placed a sigmoid function over a linear model to turn its log-odds outputs into probabilities: $p(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$
- Classifications are usually made with $\hat{y} = \begin{cases} 1 & \text{if } p(y = 1 | \mathbf{x}) \ge 0.5 \\ 0 & \text{if } p(y = 1 | \mathbf{x}) < 0.5 \end{cases}$
- The decision boundary is at $p(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b) = 0.5$
- $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b) = 0.5$ when $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ which is a still a hyperplane
- We could rewrite the classification r

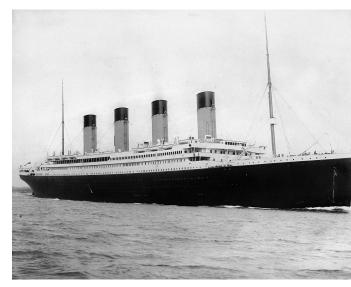
The as
$$\hat{y} = \begin{cases} 1 & \text{if } f(\mathbf{x}) \ge 0 \\ 0 & \text{if } f(\mathbf{x}) < 0 \end{cases}$$

Titanic Dataset

predict survival using logistic regression

Survive	Fare	Parch	SibSp	Age	Sex	Pclass
	7.2500	0	1	22.0	0	3
	71.2833	0	1	38.0	1	1
	7.9250	0	0	26.0	1	3
	53.1000	0	1	35.0	1	1
	8.0500	0	0	35.0	0	3
	29.1250	5	0	39.0	1	3
	13.0000	0	0	27.0	0	2
	30.0000	0	0	19.0	1	1
	30.0000	0	0	26.0	0	1
	7.7500	0	0	32.0	0	3

- If we standardise data then the weights we learn are interpretable Pclass Sex Age
- Survival more probable for people who are in first class, female, young



We can use historical data about passengers to learn a linear classifier to

For "Sex", *male* has been mapped to 0 and *female* to 1 arbitrarily

SibSp Parch Fare $\mathbf{w} = \begin{bmatrix} -0.97 & 1.27 & -0.52 & -0.27 & -0.03 & 0.16 \end{bmatrix}^{T}$

Gets 80% on held-out data so is a reasonable model

Perceptron vs. Logistic regression

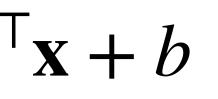
- Both give linear classifiers $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$
- The main difference is in the classification loss used for optimisation
- In logistic regression the quantities being predicted, and the loss are meaningful
- We can add a regularisation term to either loss as before
- This could be L2 or L1 (or whatever!). L2 is most common

1

$$L_{total} = \underbrace{L_{clf}}_{2} + \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

classification

regularisation



Remember that the bias goes unregularised

Multi-class classification with linear classifiers

We have $\{\mathbf{x}^{(n)}, y^{(n)}\}_{n=0}^{N-1}$ with $y \in \mathbb{Z}_{< K}^+ = \{0, 1, \dots, K-1\}$.

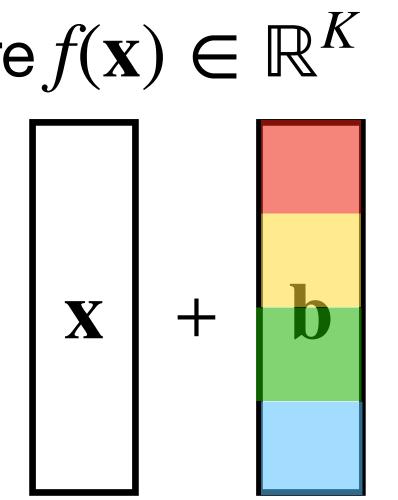
There are three different approaches to solving this:

- 1. We could learn K one-vs-rest classifiers: $f_0(\mathbf{x}), f_1(\mathbf{x}), \dots, f_{K-1}(\mathbf{x})$ and classify points according to the highest score
- 2. We could learn (K(K-1))/2 one-vs-one classifiers and classify points according to the majority vote
- 3. We could make our classifier output a **vector** where each element is a score for a different class and select the class with the highest score

Multi-class linear classifiers

- In the binary case $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ where $\mathbf{x} \in \mathbb{R}^{D}$ and $f(\mathbf{x}) \in \mathbb{R}^{1}$
- For our classifier to output a score for each of K classes we can:
 - 1. Replace the vector $\mathbf{W} \in \mathbb{R}^{D}$ with a matrix $\mathbf{W} \in \mathbb{R}^{K \times D}$
 - 2. Replace the bias vector $b \in \mathbb{R}^1$ with a vector $\mathbf{b} \in \mathbb{R}^K$
- This gives $us f(\mathbf{x}) = W\mathbf{x} + \mathbf{b}$ where $f(\mathbf{x}) \in \mathbb{R}^{K}$

$$f(\mathbf{x}) = \mathbf{W}$$



+ **b** Like having *K* classifiers side-by-side

Multinomial logistic regression

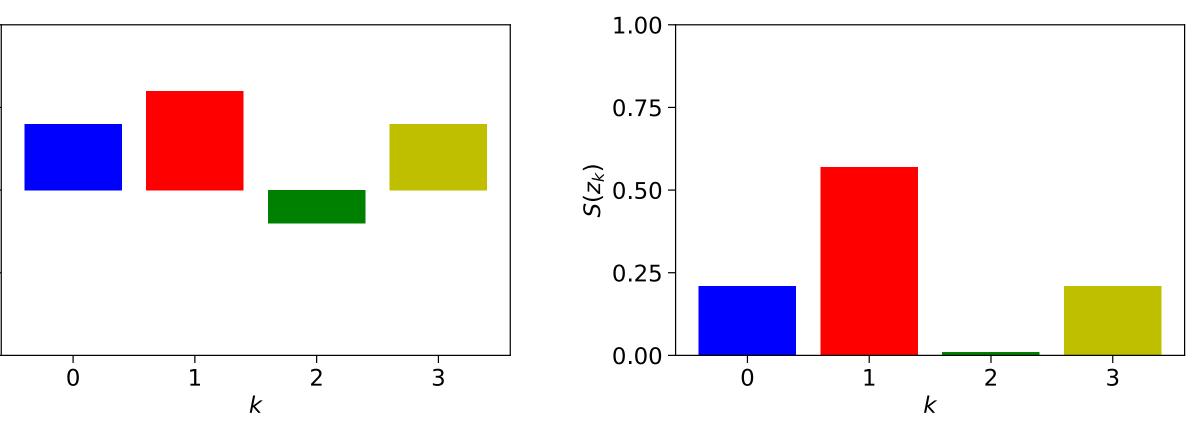
- Logistic regression naturally extends to multi-class problems
- In the binary setting, we only had to consider $p(y = 1 | \mathbf{x})$ in terms of $f(\mathbf{x})$
- In the multi-class setting we need to consider all the different probabilities
- Let's store the probabilities in a vector p
- We will write **p** as some function S of $f(\mathbf{x})$ the vector of logits $0 | \mathbf{x} \rangle$ $1 | \mathbf{x}$ $= S(f(\mathbf{x}))$ $2 | \mathbf{x})$ -1|x)

$$\mathbf{p} = \begin{bmatrix} p(y) = \\ p(y) = \\ p(y) = \\ \vdots \\ p(y) = K \end{bmatrix}$$

Softmax

- **p** must sum to 1 so we need a function that normalises $f(\mathbf{x})$
- We will use the softmax function S which squashes $f(\mathbf{x})$ so it sums to 1

$$S(\mathbf{z}) = S(\begin{bmatrix} z_0 \\ z_1 \\ \vdots \\ z_{K-1} \end{bmatrix}) = \begin{bmatrix} \exp z_0 \\ \overline{\sum_{k=0}^{K-1} \exp z_k} \\ \frac{\exp z_1}{\sum_{k=0}^{K-1} \exp z_k} \\ \vdots \\ \exp z_{K-1} \\ \overline{\sum_{k=0}^{K-1} \exp z_k} \end{bmatrix} \xrightarrow{5.0}$$



Learning for multinominal logistic regression

- We can minimise cross-entropy L_{CE} =
- Here, $\mathbf{y} \in \mathbb{R}^{K}$ is a one-hot encoding of y which is 1 for the element corresponding to class k and zero elsewhere
- e.g. for K = 6 and $y^{(t)} = 2$ we have $y^{(t)} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^{\top}$
- We can use GD/SGD with $\nabla_{\mathbf{W}} L_{CE}$ and $\nabla_{\mathbf{b}} L_{CE}$

$$\nabla_{\mathbf{W}} L_{CE} = \frac{1}{N} \left[\sum_{n} \mathbf{x}_{n} (\mathbf{p}^{(n)} - \mathbf{y}^{(n)})^{\mathsf{T}} \right]^{\mathsf{T}}$$

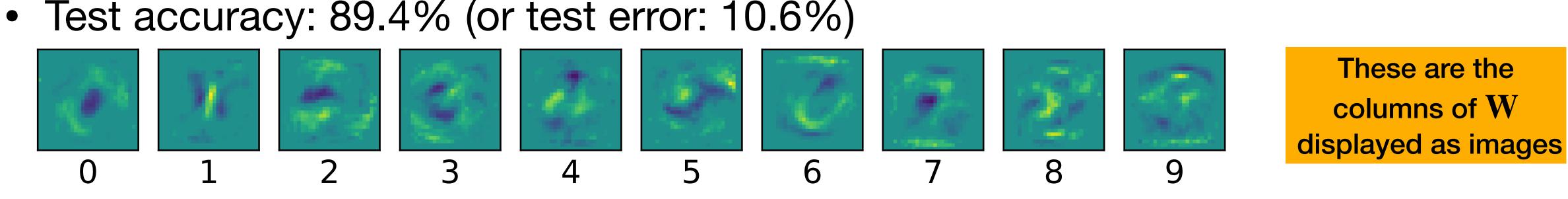
$$= -\frac{1}{N} \sum_{n} \mathbf{y}^{(n)} \log \mathbf{p}^{(n)} \text{ wrt. } \mathbf{W} \text{ and } \mathbf{b}$$

e Murphy p346 for the $abla_{\mathbf{W}}L_{CE}$ derivation. There are differences in notation, and Murphy's gradient is the transpose of mine.

What is the shape of this matrix? Can you tell from sight what $\nabla_{\mathbf{h}} L_{CE}$ is?

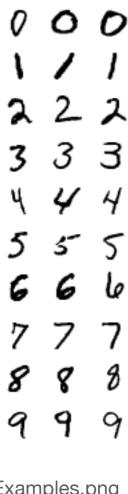
Digit classification on MNIST

- MNIST dataset has 60k images (50k train, 10k test)
- Images are 28×28 so can vectorise to get $\mathbf{x} \in \mathbb{R}^{784}$
- Each image is labelled as a digit 0-9 so $y \in \mathbb{Z}^+_{<10}$
- Let's perform multinomial logistic regression with L1 regularisation
- Classify according to most probable class



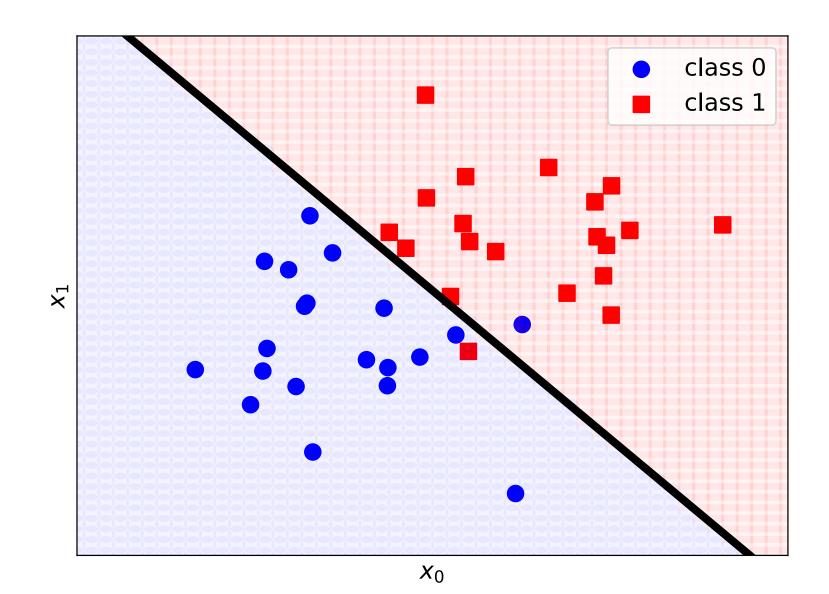
Inspired by https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html

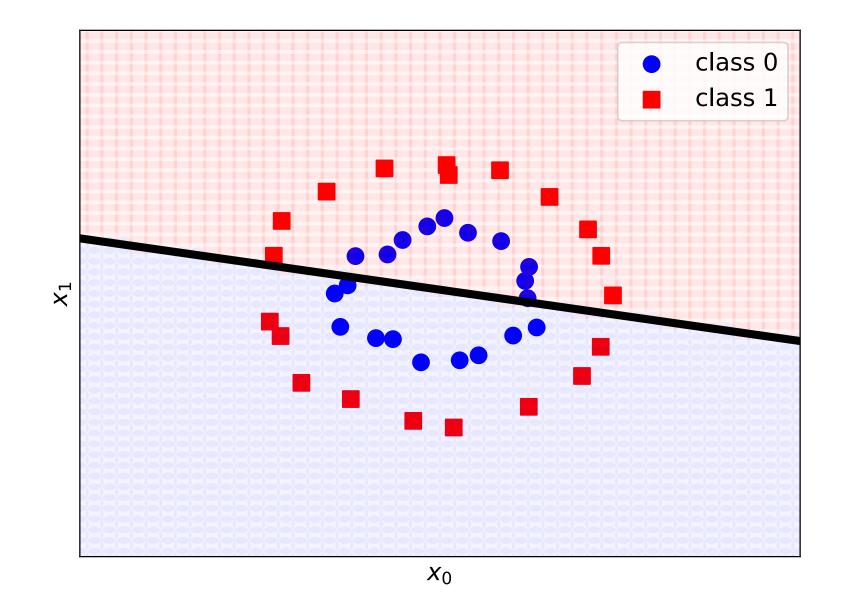
0	0	0	0	0	0	0	0	D	٥	0	0	0
1	l	١	١	١	1	1	(/	1	١	1	1
2	ູ	2	2	ð	J	2	2	ደ	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	З	3
4	4	٤	Y	4	4	Ч	4	4	4	4	4	4
5	5	5	5	5	\$	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	Ь	6	Q	6	6
F	7	7	7	7	7	ч	7	2	7	7	7	7
8	T	8	8	8	8	8	8	8	8	8	8	8
•	~	\sim	0	~	0	٩	~	0	-	4	0	0



A note on linear separability

- If training data isn't linearly separable, a linear classifier can't produce a decision boundary that perfectly classifies the training data
- You can still get good solutions if a hyperplane can separate most data
- If it can't then a linear classifier won't be any good :(





Hyperparameters again!

- We've seen learning rates, regularisation parameters... there will be more!
- We can tune these by:

 - 1. Creating a dedicated validation set, separate from train and test 2. Grid searching across hyperparameters to maximise validation performance
- **But** this reduces the amount of data we have for actual training
- Also different train/val splits might give us noticeably different models

k-fold cross-validation

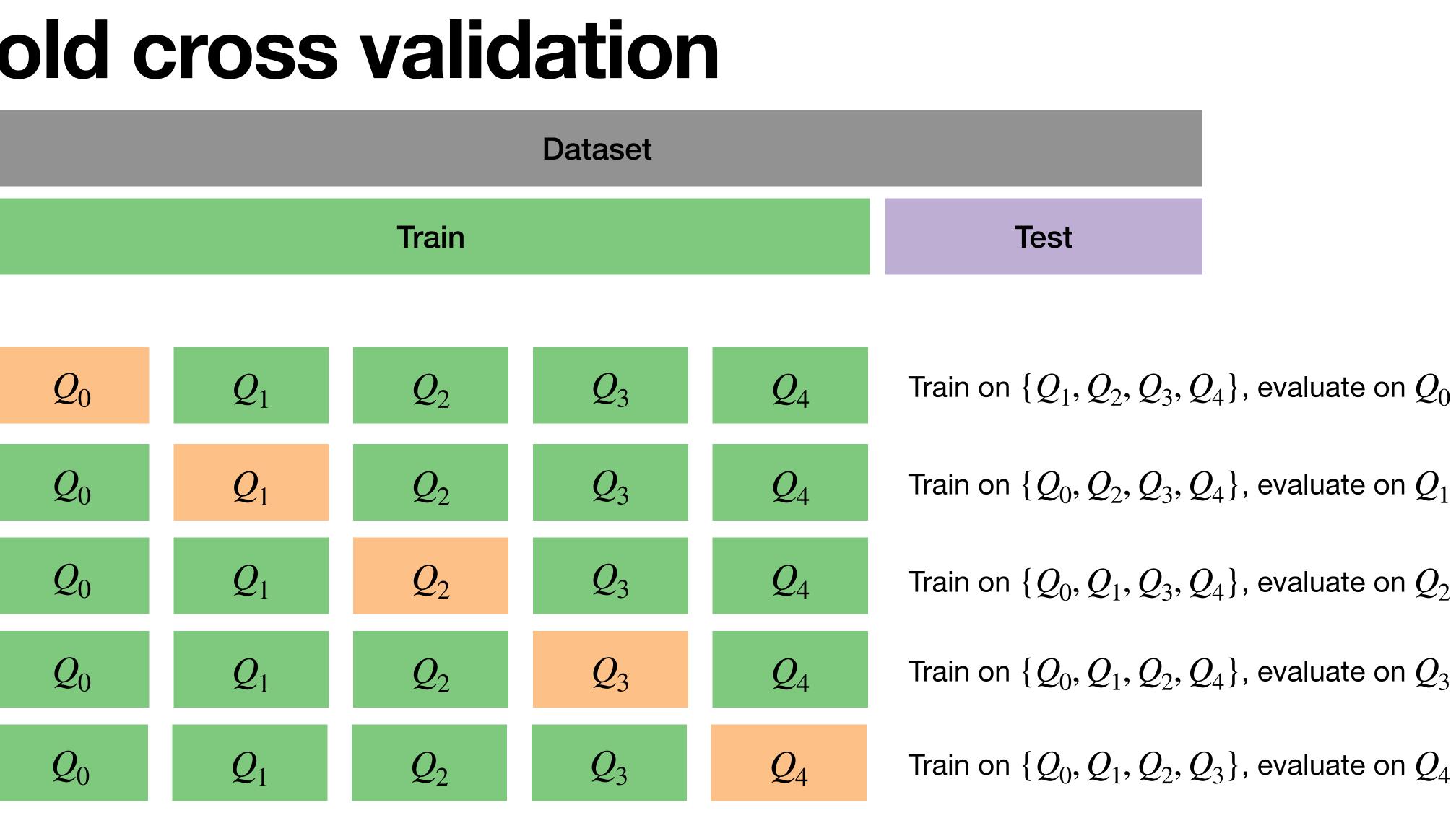
- We have been using the validation set for model selection
- picking the one that maximises some score on validation
- We can instead perform model selection by looking at cross-validation

Specifically, we have been training models with different hyperparameters and

performance. This does not require us to have a dedicated validation set

5-fold cross validation

Dataset



Q_0	Q_1	Q_2	Q_3
Q_0	Q_1	Q_2	Q_3
Q_0	Q_1	Q_2	Q_3
Q_0	Q_1	Q_2	Q_3
Q_0	Q_1	Q_2	Q_3

Then take average performance across $Q_0, Q_1, Q_2, Q_3, Q_4, Q_5$

Inspiration: <u>https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation</u>

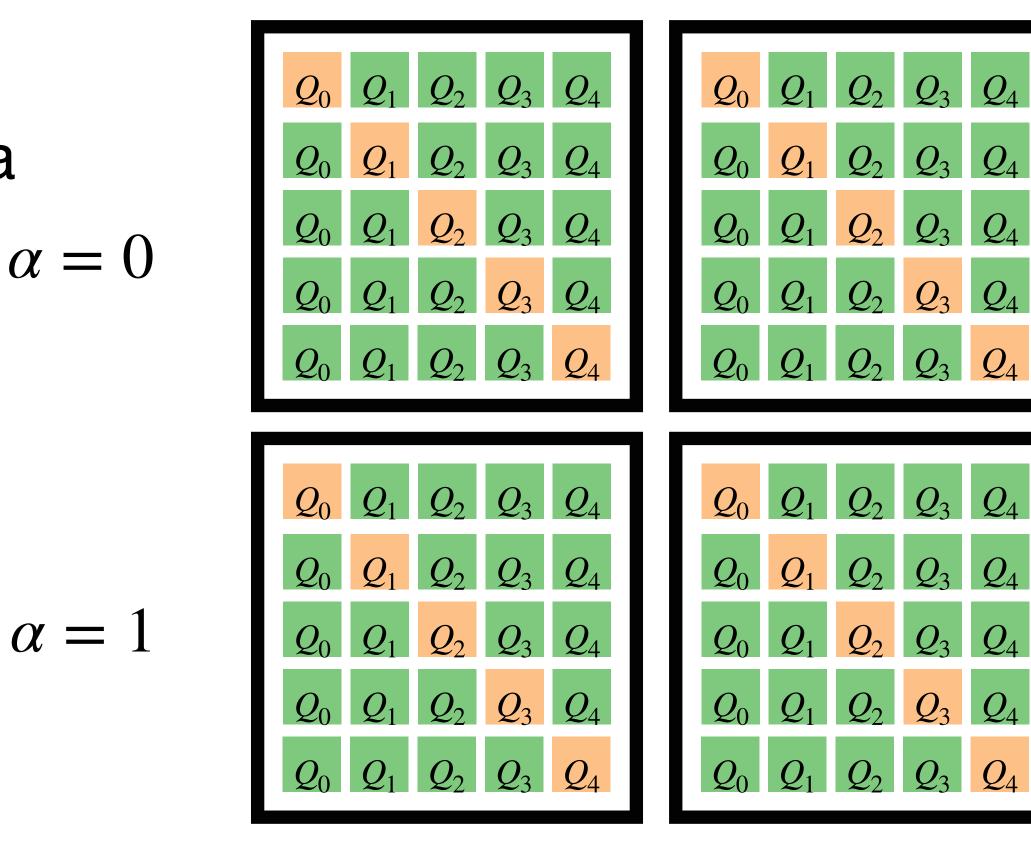
Grid search with k-fold cross validation

- Perform k-fold cross-validation for each element in the grid
- This gives you your tuned hyperparameters
- Then train a final model with these hyperparameters on all of the training data

$$\alpha = 0$$

$$\beta = 1$$

$$\beta = 10$$



Summary

- We have found out how to optimise the weights of linear classifiers for binary classification using the perceptron algorithm, and through logistic regression
- We have learnt how to modify linear classifiers for multi-class classification
- We have seen some failure modes of linear classifiers applied directly to data
- We have looked at cross-validation as an alternative to having a dedicated validation set, and how we can combine it with grid search for tuning