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Data Analysis and Machine 
Learning 4
Week 7: Support Vector Machines



• We considered the perceptron algorithm and logistic regression for learning 
the weights of linear classifiers


• We learnt about cross validation and how it can be combined with grid search
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Support Vector Machines (SVMs)



Linear classifier decision boundary

• Consider a training set  with  and 


• We have    where  and 


• Predictions are determined using 


•  is a hyperplane which forms the decision boundary of the classifier

{x(n), y(n)}N−1
n=0 x ∈ ℝD y ∈ {−1,1}

f(x) = w⊤x + b w ∈ ℝD b ∈ ℝ1

f(x) = 0

̂y = {1 if f(x) > 0
−1 if f(x) < 0



Which classifier is better and why?

A B



Robustness

• The decision boundary of classifier A is very close to its nearest points


• The decision boundary of classifier B is far away from its nearest points


• Small perturbations shouldn’t cause a point to be classified differently


• Classifier B should generalise to new data better
A B



Building in robustness

• Assuming linearly separable data, we want the decision boundary to be as 
far away as possible from the nearest training points


• This happens when it is equidistant from the nearest point(s) in class 1  and 
the nearest point(s) in class -1  


• We will call  and  the support vectors


• The distance from the boundary to the support vectors should be the same

x+
x−

x+ x−

|w⊤x+ + b |
∥w∥

=
|w⊤x− + b |

∥w∥



Fixing scores

• We want 


• The classifier scores for the support vectors should have the same magnitude


• We will choose 1 so we want  and 

|w⊤x+ + b | = |w⊤x− + b |

w⊤x+ + b = 1 w⊤x− + b = − 1



The margin

• We don’t just want the decision boundary equidistant from  and 


• We want the distance itself to be as large as possible


• This distance is given by 


• Twice this distance is the margin of the classifier

x+ x−

|w⊤x+ + b |
∥w∥

=
|w⊤x− + b |

∥w∥
=

1
∥w∥

2
∥w∥



Hard-margin SVM

• We want to maximise the margin  which is the same as minimising 


• If  then we want  for other points in class 1


• If  then we want  for other points in class -1


• Combining these, we can formulate a constrained optimisation problem 


 subject to  


• Minimising a quadratic function subject to linear constraints can be solved using 
quadratic programming algorithms (which you don’t need to know about for DAML4)

2
∥w∥

∥w∥2

w⊤x+ + b = 1 w⊤x + b > 1

w⊤x− + b = − 1 w⊤x + b < − 1

minimise
w,b

∥w∥2 y(n)(w⊤x(n) + b) ≥ 1 ∀n



Which classifier is better and why?

A B



A hard margin at what cost?
• Classifier A has a small margin


• Classifier B has a large margin but a single point is misclassified


• B likely generalises better but we can’t get it with a hard-margin SVM


• We should be able to tradeoff classifying points correctly against the margin size
A B



Allowing for margin violations

• For a hard margin SVM we have s.t. 


• This prevents points from being misclassified, or crossing into the margin 


• Can we change our objective to facilitate this if it gives us a large margin?

minimise
w,b

∥w∥2 y(n)(w⊤x(n) + b) ≥ 1∀n



Soft-margin SVM
• Let’s write a loss function that we intend to minimise consisting of two terms


• The first term should be small when the margin is big


• The second term should be small when there aren’t many margin violations





•  is a hyperparameter that controls the penalty for margin violations


•  means there is no penalty and  is the hard-margin SVM


• We can now trade a large margin for some misclassifications

LSVM =
1
2

∥w∥2+C∑
n

max(0,1 − y(n) f(x(n)))
C

C = 0 C → ∞



Varying C

C = 1000000 C = 2

We get a large margin here at

 the expense of a single violation



Return of the hinge loss 

• We last saw the hinge loss for the perceptron as 


• For SVMs it is a bit different: 

max(0, − yf(x))
max(0,1 − yf(x))

A
B

C

A B C



Optimisation for SVMs

• We have a linear classifier 


• The soft-margin SVM loss is 


• We want to solve 


•  is convex and the hinge loss is piecewise differentiable


• We can solve using stochastic gradient descent (SGD)

f(x) = w⊤x + b

LSVM =
1
2

∥w∥2+C∑
n

max(0,1 − y(n) f(x(n)))
minimise

w,b
LSVM(w, b)

LSVM



Non-linearly separable data

• A soft-margin SVM can learn from non-linearly separable training data


• Margin violations are inevitable in this case


• Whenever there are margin violations the support vectors are defined as the 
points on and in the margin (even if the data is linearly separable)

Make sure you’re happy that

 this classifier has 8 support vectors



Multi-class SVMs

• The dominant approach is to train a binary SVM for each class in a one-
versus-rest manner


• You will examine this in the lab



The dual form of an SVM
• To make a linear classifier   an SVM we solve





• This is the primal problem. There is an equivalent dual problem


• For the dual we use the representer theorem to rewrite  and solve

 subject to   and 


f(x) = w⊤x + b

minimise
w,b

1
2

∥w∥2+C∑
n

max(0,1 − y(n) f(x(n)))

f(x) = ∑
n

αny(n)x(n)⊤x + b

minimise
α0,…,αN−1

1
2

N−1

∑
j=0

N−1

∑
k=0

αjαky( j)y(k)(x( j)⊤x(k)) − ∑
n

αn 0 ≤ αn ≤ C ∀n ∑
n

αny(n) = 0

https://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation

This objective is given without proof and you are not required to understand it for this course.

It can be solved using quadratic programming and  can then be calculated using the data and  valuesb α

We are no longer 
assuming linear 

separability



SVM primal and dual forms

• We have primal form  and dual  


•  can be constructed from the s using 


• When  its more efficient to solve for the vector of s: 


• It then looks like we have to retain lots of data points but  is very sparse


• Its elements are only non-zero for training points that are support 
vectors

f(x) = w⊤x + b f(x) = ∑
n

αny(n)x(n)⊤x + b

w ∈ ℝD α w = ∑
n

αny(n)x(n)

D ≫ N α α ∈ ℝN

α



Kernels



Feature maps for linear separability 

• We have been using  but we could use 


•  maps  to a feature vector  that lives in feature space 


• The issue of linearly inseparability keeps cropping up


• Let’s deal with this by using a  that makes data separable in feature space

f(x) = w⊤x + b f(x) = w⊤ϕ(x) + b

ϕ x ∈ ℝD ϕ(x) ∈ ℝZ

ϕ

ϕ ?



Features as polar coordinates

• In this contrived example, data from each classes lies on a circle (with noise)


• Let’s use a  that maps to polar coordinates to separate these


• We can then learn the weights for  e.g. with an SVM loss

ϕ

f(x) = w⊤ϕ(x) + b

ϕ(x) = [
∥x∥

tan−1 x1

x0
]

⊤

x = [x0
x1]

ϕ



Non-linear decision boundary

• We can see how dummy points in the original space will be classified


• We can see our linear classifier in feature space has given us a non-linear 
decision boundary in the original space

ϕ(x)w + b > 0

ϕ(x)w + b < 0



Mapping to higher dimensions

•  maps  to a feature vector  that lives in feature space 


• Data that isn’t linearly separable in  dimension can be in higher dimensions

ϕ x ∈ ℝD ϕ(x) ∈ ℝZ

D

ϕ(x) =
x02

x12

x0x1

x = [x0
x1]

ϕ



Dot products of features

• Consider the primal form of an SVM linear classifier   


•  maps  to a feature vector  that lives in feature space 


• This classifier has  parameters so is expensive to train for large 


• Can we solve the dual to learn  parameters instead? 


• The equivalent dual form of the classifier is 


• We just substitute  for  in the dual problem formulation

f(x) = w⊤ϕ(x) + b

ϕ x ∈ ℝD ϕ(x) ∈ ℝZ

Z + 1 Z

N

f(x) = ∑
n

αny(n)ϕ(x(n))⊤ϕ(x) + b

x ϕ(x)



The kernel trick

• In the dual  only appears in dot products: 


• Consider for some  a function  


• This let’s us compute this dot product without actually computing features


• The classifier becomes 


• If we know the kernel  for  then we can project data to high 
dimensions implicitly

ϕ ϕ(x( j))⊤ϕ(x(k))

ϕ k(x( j), x(k)) = ϕ(x( j))⊤ϕ(x(k))

f(x) = ∑
n

αny(n)k(x(n), x) + b

k(x( j), x(k)) ϕ



Kernel SVM

k(x( j), x(k)) = x( j)⊤x(k) k(x( j), x(k)) = (γx( j)⊤x(k) + r)d    k(x( j), x(k)) = e(−γ∥x( j)−x(k)∥2)
Linear kernel Polynomial kernel RBF kernel

 for this kernel is in infinite dimensions

Don't think about this too much :D 

ϕ(x)

Dataset credit: https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html

. This is what we have been using

Most of the time 

ϕ(x) = x  contains polynomial terms up to the

 degree

ϕ(x)
dth



A note on kernels

• Kernels are often associated with SVMs but are not bound to that framework


• They feature prominently in Gaussian processes (not covered in DAML4)


• Several algorithms we have covered thus far can be combined with kernels to 
form e.g.  kernel PCA, kernel ridge regression



Classifier selection and 
evaluation



No free lunch

• You now know about perceptrons, logistic regression, and SVMs


• Perceptrons are terrible, so you can forget about using those in practice 


• But should you use an SVM or logistic regression? 


• If you use an SVM, which kernel do you pick?


• The answer to both of the above questions are it depends on the problem


• There is no universal best model! There is no free lunch!



Model selection

• Choosing between SVMs and logistic regression is a model selection problem


• Choosing which kernel to use is a model selection problem


• Use validation (or cross-validation) performance for model selection


• You can view e.g. kernel type as another hyperparameter to be tuned

95%rbf kernel

poly kernel

β = 0.1 β = 1 β = 10

80% 78%

56% 99% 80%
Evaluate on the test set 
as little as possible or 
you will overfit to it!



A note on grid search

• Grid search is an intuitive starting point for hyperparameter tuning


• But random search (and other schemes) work better in practice!

Figures inspired by Raschka et al.’s book



Evaluating classifiers

• So far we have used accuracy as the de facto means to evaluate a classifier 


• This is simply the fraction of correct classifications overall


• There are other ways to evaluate classifiers, as accuracy isn’t always the most 
important thing



Not all (binary) classifications are equal

• A patient with cancer is classified as having cancer (True positive)


• A patient with cancer is classified as not having cancer (False negative) 

• A patient without cancer is classified as having cancer (False positive)


• A patient without cancer is classified as not having cancer (True negative)


TN FP

FN TP

True class

Predicted class

0

1

0 1

We can summarise 
these possibilities 
across a dataset 
using a confusion 

matrix



Receiver operating characteristic (ROC) curves

• These compare true positive rates against true negative rates using different 
classifier scores as thresholds for binary classifiers


• The area under the curve (AUC) can be used to summarise this


• Ideally this would be 1



Retrieval 

• In a retrieval task we are interested in extracting some data class (e.g. images 
of dogs) from a larger corpus (e.g. all the images on the internet)


• We can sort data in our corpus according to classification score for the class 
we want (from highest to lowest score)


• We can then evaluate how good our retrieval system is by looking at:


• Precision: The fraction of top-  scoring points that are in the class we want 


• Recall: The number of top-  scoring points that are the in the class we 
want divided by the total number of data points in that class

k

k



Retrieving dogs

• Let’s say we have a corpus of 200 images where 100 are of dogs


• We apply our dog-vs-not-dog classifier to this corpus, and retrieve the top 
scoring images one by one



Precision @ 


Recall @ 

k = 1
k = 1

k = 1/100



Precision @ 


Recall @ 

k = 2
k = 1

k = 2/100



Precision @ 

Recall @ 

k = 3
k = 2/3

k = 2/100



Precision @ 

Recall @ 

k = 4
k = 3/4

k = 3/100



Precision-Recall curves

• Precision and recall can be plotted against each other


• The area under this curve is called average precision (AP) and is commonly 
used to summarise retrieval performance (especially for object detection)


• If we are retrieving multiple classes separately we can take the mean of the 
AP for each class to get mean average precision (mAP)

AP is 0.462



Summary

• We have learnt how we can maximise the margin of a linear classifier to form 
a hard-margin support vector machine for linearly separable data


• We have seen how we can relax the margin constraint to form a soft-margin 
support vector machine that allows for margin violations


• We have considered the dual form of an SVM expressed in terms of support 
vectors 


• We have considered feature maps for dealing with linear inseparability


• We have seen how the kernel trick can implicitly perform feature mapping


• We have looked at different way to evaluate classifiers


