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Data Analysis and Machine 
Learning 4
Week 8: Non-parametric models 



• We motivated the hard-margin SVM formulation to obtain a max-margin 
classifier and relaxed it to allow for margin violations


• We introduced the dual form of the SVM and showed how the kernel trick lets 
us implicitly map features to higher dimensions

Recap



Non-parametric models

• Parametric models are represented by a function with a fixed number of 
parameters i.e. they have a fixed capacity


• Non-parametric models are not!


• The capacity of a non-parametric can scale with the number of data points


• In this lecture we will consider -nearest neighbour and decision tree 
classifiers which are both non-parametric models


• We will also look at a random forest, which is an ensemble of decision trees

k

Credit to Joe Mellor for the description



-nearest neighbours k



-NN classificationk

• k-nearest neighbours ( -NN) is a simple algorithm for classification 


• It has no parameters, and a single hyperparameter 


• Consider a training set  where data  
points are 2D  and labels are binary 




• Let’s use -NN with  to perform  
binary classification on a test point 


• i.e. classify  as either class 1 or class 0

k

k

{x(n), y(n)}N−1
n=0

x ∈ ℝ2

y ∈ {0,1}

k k = 3
x(t)

x(t)



-NN algorithm for classifying a test pointk
1. Compute distances between  

 training points and test point
2. Isolate -nearest training pointsk 3.   Classify as mode of the 


                labels of the -nearest pointsk

Here k = 3 Predict as class 1



-NN decision boundaryk

• Consider how an arbitrary point will be classified in this space


• There will be a region where it is predicted as class 0, and another for class 1


• The border of these two regions is the classifier’s decision boundary 

• This is non-linear for -NNk



Multi-class classification with -NNk

• We have considered binary classification with -NN


• The algorithm works for multi-class (  classification too

k

K > 2)
 and  are not the 

same!
K k



Tuning  by grid searchk
Classifying digits on vectorised images   labelled x ∈ ℝ64 y ∈ ℤ+

<10

Highest validation 
accuracy for 


Use this for test 
evaluation

k = 1



Decision trees



A learnt tree of simple binary rules based on thresholding feature values

Decision trees for classification

x1 ≤ 0.294?

x0 ≤ 0.454?class 0

class 2 class 1

True False

True False

x



Classifying a point x(t)

x(t)
1 ≤ 0.294?

x(t)
0 ≤ 0.454?class 0

class 2 class 1

True False

True False

x(t)



Classifying a point x(t)

x(t)
1 ≤ 0.294?

x(t)
0 ≤ 0.454?class 0

class 2 class 1

True False

True False

xt

 is classified as class 2xt



What is the tree doing?

• It is slicing up the feature space using straight lines


• This gives a non-linear decision boundary

x1 ≤ 0.294?

x0 ≤ 0.454?class 0

class 2 class 1

True False

True False

x



Some nomenclature

x1 ≤ 0.294?

x0 ≤ 0.454?class 0

class 2 class 1

True False

True False

x This tree has depth of 2 as 
there are two levels of feature 

thresholding

Nodes at which class 
decisions are made are leaf 

nodes

The boxes are all nodes

Nodes that are not leaf nodes 
have a left and right child node



Learning a decision tree from training data

• We have a dataset  where  and 


• First we decide on the maximum depth for our decision tree (let’s say 3)


• Then we decide how to split at the first node


• The first node splits  into  and according to

Q0 = {xn, yn}30−1
n=0 x ∈ ℝ2 y ∈ {0,1,2}

Q0 Qleft
0 Qright

0

Qleft
0 (d, t0) = {x(n), y(n)}n:x(n)

d ≤t0

Qright
0 (d, t0) = {x(n), y(n)}n:x(n)

d >t0

Formulation based on https://scikit-learn.org/stable/modules/tree.html#tree-algorithms



Learning a decision tree from training data

• We have  and  


• Let’s say we have some function  that tells us how bad a split it 


• How much we care about a split should be proportional to its size (e.g. we’d be 
happy with something that splits 99% of our data well, and 1% badly)


• We can devise a loss function and minimise it 





• Solve  to get the best feature and threshold for the split

Qleft
0 (d, t0) = {x(n), y(n)}n:x(n)

d ≤t0 Qright
0 (d, t0) = {x(n), y(n)}n:x(n)

d >t0

H

L0 =
nleft

0

n0
H(Qleft

0 (d, t0)) +
nright

0

n0
H(Qright

0 (d, t0))

minimise
d,t0

L0

Formulation based on https://scikit-learn.org/stable/modules/tree.html#tree-algorithms

n0 = len(Q0)



Which split is good and which is bad?



Measuring the quality of a split

• A good split will separate examples from different classes


• This will make the resulting class distributions non-uniform


• Entropy provides a measure of the uniformity of a probability distribution


• For a split, we can divide the number of data points in a class by the total 
number of data points in the split to get class probabilities 


• Entropy can then be computed as 

p0, p1, …, pK−1

H = − ∑
k

pk log pk

We need to add a 
small constant to 

prevent  going 
to minus infinity

log 0



Examples of different entropies 



The left child node

• Using  as entropy we can minimise  to get  and 


• We add a decision node with these values


• Now we need to add a left and right child node that branch off this


• Let’s consider the left child node: we start by looking at 


•  only has training points in a single class


• When this happens, we build a leaf node for that class

H L0 d = 1 t0 = 0.294

Qleft
0

Qleft
0 x1 ≤ 0.294?

T F

class 0

Qleft
0 Qright

0

Q0



The right child node

• Let’s consider the right child node: we start by looking at 


•  has training points in multiple classes


• We first check to see if we are at maximum depth — we are not


• We need to split further, so write  and minimise 


• This gives us  and 


• We add a decision node with these values 

Qright
0

Qright
0

Q1 = Qright
0 L1

d = 0 t1 = 0.454 x1 ≤ 0.294?

T F

class 0 x0 ≤ 0.454?

Qleft
0 Qright

0

Q0



Decision tree complete

• We now need to add child nodes


• But  and  each only contain a single class


• We just add leaf nodes, and we’re done

Qleft
1 Qright

1
x1 ≤ 0.294?

x0 ≤ 0.454?class 0

class 2 class 1

T F

T F

Qleft
0 Qright

0 = Q1

Q0

Qright
1Qleft

1



How trees will look in Sklearn

Make sure that you’re happy that these trees are the same!

x[1] ≤ 0.294
entropy = 1.585
samples = 30

value = [10, 10, 10]
class = 0

entropy = 0.0
samples = 10

value = [10, 0, 0]
class = 0

True

x[0] ≤ 0.454
entropy = 1.0
samples = 20

value = [0, 10, 10]
class = 1

False

entropy = 0.0
samples = 10

value = [0, 0, 10]
class = 2

entropy = 0.0
samples = 10

value = [0, 10, 0]
class = 1

x1 ≤ 0.294?

x0 ≤ 0.454?class 0

class 2 class 1

T F

T F



Decision tree learning

For  where  and 


• Add decision node with values that minimise 


• Add a left and right child node after this decision node


• Make each child node a decision node with values that minimises  unless at max depth or split only contains 1 class


• Add a left and right child node after each decision node


• Make each child node a decision node with values that minimises  unless… 


• Add a left and right child node after each decision node


• Make each child node a decision node with values that minimises …

Q0 = {x(n), y(n)}N−1
n=0 x ∈ ℝN y ∈ ℤ+

<K = {0,1,…, K − 1}
L0

Lleft
1 /Lright

1

Lleftleft
2 /Lleftright

2 /Lrightleft
2 /Lrightright

2

This algorithm is recursive



What happens if you reach maximum depth?
• Just create a leaf node that classifies 

as the highest probability 


• To the right we learn a decision tree 
on the iris dataset with a max depth 
of 3

petal length (cm) ≤ 2.45
entropy = 1.585
samples = 150

value = [50, 50, 50]
class = setosa

entropy = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
entropy = 1.0
samples = 100

value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
entropy = 0.445
samples = 54

value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
entropy = 0.151
samples = 46

value = [0, 1, 45]
class = virginica

entropy = 0.146
samples = 48

value = [0, 47, 1]
class = versicolor

entropy = 0.918
samples = 6

value = [0, 2, 4]
class = virginica

entropy = 0.918
samples = 3

value = [0, 1, 2]
class = virginica

entropy = 0.0
samples = 43

value = [0, 0, 43]
class = virginica



Malignancy classification with a small tree

• Breast Cancer Wisconsin dataset has 569 data points  with binary 
class labels  (malignant / benign) 


• Features are measurements from a digitised image of a fine needle aspirate of 
a breast mass


• Let’s split 66%/33% train/val and learn a depth 2 decision tree

x ∈ ℝ30

y

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

mean concave points ≤ 0.051
entropy = 0.958
samples = 381

value = [145, 236]
class = benign

worst radius ≤ 16.83
entropy = 0.293
samples = 233
value = [12, 221]
class = benign

True

worst perimeter ≤ 114.45
entropy = 0.473
samples = 148
value = [133, 15]
class = malignant

False

entropy = 0.157
samples = 219
value = [5, 214]
class = benign

entropy = 1.0
samples = 14
value = [7, 7]

class = malignant

entropy = 0.98
samples = 36
value = [21, 15]
class = malignant

entropy = 0.0
samples = 112
value = [112, 0]
class = malignant

This is interpretable 
and achieves a val 
accuracy of 91.5%



Malignancy classification with a large tree
mean concave points ≤ 0.051

entropy = 0.958
samples = 381

value = [145, 236]
class = benign

worst radius ≤ 16.83
entropy = 0.293
samples = 233
value = [12, 221]
class = benign

True

worst perimeter ≤ 114.45
entropy = 0.473
samples = 148
value = [133, 15]
class = malignant

False

radius error ≤ 0.626
entropy = 0.157
samples = 219
value = [5, 214]
class = benign

mean texture ≤ 16.19
entropy = 1.0
samples = 14
value = [7, 7]

class = malignant

worst texture ≤ 30.145
entropy = 0.106
samples = 216
value = [3, 213]
class = benign

worst symmetry ≤ 0.208
entropy = 0.918
samples = 3
value = [2, 1]

class = malignant

entropy = 0.0
samples = 188
value = [0, 188]
class = benign

worst radius ≤ 14.43
entropy = 0.491
samples = 28
value = [3, 25]
class = benign

entropy = 0.0
samples = 20
value = [0, 20]
class = benign

mean perimeter ≤ 86.26
entropy = 0.954
samples = 8
value = [3, 5]
class = benign

mean compactness ≤ 0.052
entropy = 0.811
samples = 4
value = [3, 1]

class = malignant

entropy = 0.0
samples = 4
value = [0, 4]
class = benign

entropy = 0.0
samples = 1
value = [0, 1]
class = benign

entropy = 0.0
samples = 3
value = [3, 0]

class = malignant

entropy = 0.0
samples = 2
value = [2, 0]

class = malignant

entropy = 0.0
samples = 1
value = [0, 1]
class = benign

entropy = 0.0
samples = 5
value = [0, 5]
class = benign

worst concavity ≤ 0.207
entropy = 0.764
samples = 9
value = [7, 2]

class = malignant

entropy = 0.0
samples = 2
value = [0, 2]
class = benign

entropy = 0.0
samples = 7
value = [7, 0]

class = malignant

worst texture ≤ 25.655
entropy = 0.98
samples = 36
value = [21, 15]
class = malignant

entropy = 0.0
samples = 112
value = [112, 0]
class = malignant

worst concave points ≤ 0.166
entropy = 0.523
samples = 17
value = [2, 15]
class = benign

entropy = 0.0
samples = 19
value = [19, 0]

class = malignant

entropy = 0.0
samples = 15
value = [0, 15]
class = benign

entropy = 0.0
samples = 2
value = [2, 0]

class = malignant

Depth 7 tree with a val 
accuracy of 95.2%

This is hard to 
interpret

Is this a scenario where you 
would trade off interpretability 

for performance?



Gini impurity

• For some  we write 


• Here  is is entropy  and we solve 


• This calculation is being performed a lot. Can we make it cheaper?


• Yes. Use Gini impurity  instead of entropy

Qm Lm =
nleft

m

nm
H(Qleft

m (d, tm)) +
nright

m

nm
H(Qright

m (d, tm))

H −∑
k

pk log pk minimise
d,tm

Lm

∑
k

pk(1 − pk)

Don’t have to compute  any more which is expensive log



Gini impurity vs. Entropy
Gini impurity is the probability of incorrectly classifying a new data point labelled 
according to the class distribution of that split


Shapes are very similar


Choice has minimal effect 
on performance



Decision trees tend to overfit and are unstable

x[1] ≤ 0.294
gini = 0.667
samples = 30

value = [10, 10, 10]
class = 0

gini = 0.0
samples = 10

value = [10, 0, 0]
class = 0

True

x[0] ≤ 0.454
gini = 0.5

samples = 20
value = [0, 10, 10]

class = 1

False

gini = 0.0
samples = 10

value = [0, 0, 10]
class = 2

gini = 0.0
samples = 10

value = [0, 10, 0]
class = 1

x[1] ≤ 0.294
gini = 0.667
samples = 30

value = [10, 10, 10]
class = 0

gini = 0.0
samples = 10

value = [10, 0, 0]
class = 0

True

x[0] ≤ 0.414
gini = 0.5

samples = 20
value = [0, 10, 10]

class = 1

False

gini = 0.0
samples = 9

value = [0, 0, 9]
class = 2

x[0] ≤ 1.179
gini = 0.165
samples = 11

value = [0, 10, 1]
class = 1

gini = 0.0
samples = 9

value = [0, 9, 0]
class = 1

x[0] ≤ 1.315
gini = 0.5

samples = 2
value = [0, 1, 1]

class = 1

gini = 0.0
samples = 1

value = [0, 0, 1]
class = 2

gini = 0.0
samples = 1

value = [0, 1, 0]
class = 1

x[0] ≤ 0.519
gini = 0.664
samples = 30

value = [11, 10, 9]
class = 0

x[1] ≤ 0.434
gini = 0.495
samples = 20

value = [11, 0, 9]
class = 0

True

gini = 0.0
samples = 10

value = [0, 10, 0]
class = 1

False

gini = 0.0
samples = 10

value = [10, 0, 0]
class = 0

x[0] ≤ 0.224
gini = 0.18

samples = 10
value = [1, 0, 9]

class = 2

gini = 0.0
samples = 9

value = [0, 0, 9]
class = 2

gini = 0.0
samples = 1

value = [1, 0, 0]
class = 0



Random Forests

• A decision tree can (and will) overfit to training data, making mistakes that 
won’t give us a model that generalises to held-out data


• But if we have lots of trees trained on different permutations of the training 
data then they won’t all make the same mistakes


• We expect that if we average the decisions of all these trees (the wisdom of 
the crowd) we will get something that generalises better

A random forest is an ensemble model that consists

 of multiple (usually 100) decision trees 



Bootstrap aggregation (bagging)

• We have dataset  and want to train  trees


• For each tree, sample  data points at random with replacement and train

Q0 = {x(n), y(n)}N−1
n=0 t

M

This isn’t exclusive to decision 
tree based classifiers



Evaluating the ensemble

• Put a test point through each tree  to get the class probability distribution 


• Then just average all the  and pick the class with the highest probability

t pt

pt



Is that a random forest?

• Not quite. A random forest is bagging and feature subsampling at each 
node


• For each tree, you perform bagging but also only select a subset of available 
features at each node (this is more meaningful in higher dimensions!)

A random forest is an ensemble of decision trees


Each tree is trained on a random sample of the training data with replacement


At each node in each tree, only a subset of features are available



The 20 newsgroups dataset
• 18k (11k train, 7k test) posts from 20 different newsgroups (think subreddits)


• The task is given a post, classify which news group it belongs to


• A simple way to represent text is as a histogram of word counts (a bag of words) 
e.g. [ # “I”, # “like”, # “sausage”, # “hate”]


• For 20 newsgroups this gives us  and we have 


• With a decision tree we get a test accuracy of 55.7%


• With a random forest of 100 trees we get a test accuracy of 75.5%

x ∈ ℝ130107 y ∈ ℤ+
<20

I like sausage sausage sausageI hate sausage

[1 1 1 0]⊤ [1 0 1 1]⊤ [0 0 2 0]⊤



Coursework 2 (25% of course mark)
• You will perform data analysis and machine learning on “Sentiment Soup”: a dataset of 100k 

text samples drawn from different sources


• You should write a 4-6 page report with an appendix containing code where you:


1. Explain what sentiment analysis is and its importance


2. Summarise and visualise “Sentiment Soup”


3. Create a set of classification tasks 


4. Train and evaluate classifiers on those tasks, examining different text representations


5. Select models and examine how they perform on external data that you have found


• The full brief, dataset, submission instructions, and the marking rubric are available on Learn 
under the “Assessment” tab (after 0950 today). Deadline 28/3 @ 1600



Summary

• We have looked at -nearest neighbours 


• We have learnt about decision trees and how they are trained


• We have seen how entropy and Gini impurity allow for good splits


• We have seen how decision trees can overfit 


• We have learnt about bootstrap aggregation as a way to form model 
ensembles


• We have found out that random forests consist of bootstrap aggregation and 
feature subsampling

k


