[J
Data Analysis
& Machine Learning

Data Analysis and Machine
Learning 4

Week 9: Deep neural networks

@ THE UNIVERSITY

Elliot J. Crowley, 20th March 2023
- of EDINBURGH

Recap

e We learnt abo

4

t about k-NN and decision trees

@ classO mean concave points < 0.051
i B class1 entropy = 0.958
3 i @ class2 samples = 381
class 5 Value = [145, 236]
21 & n class = benign
False
1 -
worst perimeter < 114.45
< 0 entropy = 0.473
o samples = 148
value = [133, 15]
—1- == as class = malignant
¢
—2- ol
- b 4 entropy = 1.0 entropy = 0.98
-3 ¢ S samples = 14 samples = 36
value =[7, 7] value = [21, 15]
_s : | | | | : . class = malignant class = malignant
-4 -3 -2 -1 0 1 2 3 4

Xo

Deep Learning

Linear regression

 Given training data {X(”),y(”)}fyz_ol x € R, y € R') we can learn a model:
. f(xX) =wW'p(xX) + b sty = (x)Vn

« We want ¢ to map the data to a space where we can fit a hyperplane to it

| @ training data T | — fix)
® transformed data

(Binary) linear classifiers

D

 Given training data {X(’”‘),y(’“)}]y)’:_o1 x € R”, y € {0,1}) we can learn a model:
. f(X) = W'@(X) + b s.t. the hyperplane f(x) = 0 separates the classes

» We want ¢ to map the data to a space where classes can be separated by a
hyperplane

@® class -1 l'l o I -1
" B class1 ”X” .Olln L, m classl
[| X) = | I|
O] ¢() tan‘l ﬁ .0. |I |I =
] ° .‘ o ° [0 ® .l -| ..
| |.
[T o © o B ‘.lI |I'
< o® :] § : i |||.-.
] ® ® O \
- °¢ ¢ | |
o 0° - s '| || -
] H ® |..
] | ® I|]
., o ¢ *.l
Q! 1

X0 d(X)o

Multi-dimensional output

 What if we want to perform multi-class classification or regress to a multi-
dimensional output f(X) € | K2

fX) =w'gp(x) +bwithw € R”and b € R!

becomes

f(X) = Wa(X) + b with with W € R“*A and b € R*

 We will assume this is the default output from now on as it is more general

Feature learning

 There are plenty of off-the-shelf feature maps ¢

 But how do we know if we’ve got the best one for a particular problem?
» Trying to design @ for a new problem can be tedious or impossible!

« What if we could learn ¢ directly from our training data?

 This is what deep learning entails. It’s feature learning!

Deep (feedforward) neural networks (DNNs)

» These are non-linear models consisting of & functional layers

f(x) = fLD e fSD oo f Do fOx)

. The first & — 1 layers form a learnable feature map ¢(x) € R%. These are
known as hidden layers

p(x) =7 fOFOX)

* The last layer is a linear transformation of the features (this can perform e.q.
linear classification or linear regression)

f(x) = A D(p(x)) = W Dp(x) + b xfo . fa . s @Iﬁf (x)

The multilayer perceptron (MLP)

A DNN takes the form) 0 WOl hO K3 -2 h(Z- I}C(X)
A(x) zf(ff—l) of(E—Z) o of(l) Of(o)(X) / d f P(x)

 An MLP is a network where each hidden layer output h®) e |
h®) = Oy = g(WOR'D + bD) for [= 0,1,..., L -2

* The layer input is the output of the previous layer h(=D g |

* This undergoes a linear transformation

* |t then passes through a non-linear element-wise function g

g is called an activation function and layer outputs are called activations

Layers in an MLP are known as fully-connected or dense layers

Two layer MLP

. For a 2 layer MLP with x € R” and f(x) € R* we have:
H(X) = h©) — g(W(O)X n b(O))
fix) = h!V) = WD 4 pD
. We can write the whole MLP as f(x) = WWg(WVx + p©) 4 bV
 We have to decide on the dimensionality of h(® (the width of the hidden layer)

* We also have to pick a non-linearity g

Activation functions

 These make our function non-linear. Without them an MLP collapses into a
single linear transformation

* They are element-wise functions which means each element of the input
vector Is individually transformed

Sigmoid activation function RelLU activation function
1.0- 10 -
0.8 - 8
£ 0.6 S 6
= =
3 0.4- > 4-
0.27 27 ReLU or “rectified linear
0.0- 0- unit” is the most prevalent
—10 =5 0 5 10 —10 =5 0 5 10 activation function
Input Input

and is what will we

2(z) = 2(z) = max(0,z) consider for the rest of
1 +e* this course

Alternate view of our MLP

h© — g(W(O)X n b(O)) e Sometimes you see MLPs drawn as graphs

e Here, the elements of
h() = WHRhO 4 pb) x € R2h© e R3 h® € R2

nodes

are represented by

o Stuff is happening at the node inputs!

. It follows that W) € R**2 p») ¢ R3

. And also that W) € R?%3 p() € R?

e Sometimes these nodes are referred to as neurons

MLP: Layer O

h© —

oo
h
h®

'

(0)
Wo.l

hO

0)

= g(WOx + b®) = g(

[(0
we o

0
Wig
(0)

W30

.
o

0
Wil

0
W

.
b
bV

b

0)
ﬂ

0,0
0)
° N
QOIS
(0)
"0

(0)
W1
ST

Consider one of the neurons of h")

It receives a weighted sum of the input
neurons, to which a bias is added

This quantity is known as a pre-activation and it
goes into an activation function g

If we are using Rel.U activations

2(2) = max(0,z) then the pre-activation must
be positive to pass through

If this happens we say that the neuron has
activated

MLP: Layer 1

(D il ws) w§y w'| a1 e There is no activation function for the last
hO= [0 | =2 WOR® L p» = [’ “ o] 4 |70
L i wid wiB] | o] [layer

e |t’s just a matrix multiplied by a vector plus
another vector

(D

%00 * [he previous layer was the same + a non-
p @ inearity

0
0, Always has been
(1) : |
1,1 N A A Walt, it's all)
x : AN hE
7 SN 2 v ‘ v -
y = R

A linear algebra?

| e
https://www.reddit.com/r/machinelearningmemes/comments/hst89w/always_has_been/

Batch processing

.
 Consider a N X D dataset matrix X = [X(O)T x(DT ”.X(N—I)T]

. If we want to collect all the layer 0 outputs in a N X Hy matrix H") then we
can compute H? = g(XWOT £ pO1T)

« We can similarly collect all the layer 1 outputs in a N X Z matrix using
HO = HOWDOT L p(O1T

* This is how it’s done in PyTorch which is the deep learning framework we’ll
use

1 is a vector of ones the
same size as whatever it
is being multiplied by :)

Binary classification with a 2 layer MLP

* This data is not linearly separable

® classO
B class1

* We will run through how a 2 layer (1) .
MLP can deal with this in batch X = 0
]

« HY = g(XWOT 4+ pO1T)
. HY = HOWODT L (1T

« Rows of HY are feature vectors

. Rows of HV are the corresponding : ;
f(X) for each feature vector ”

For binary classification HY is a vector, W) is a vector, and bV is a
scalar but I’'m keeping the more general notation for multi-class

This is equivalent to learning XOR. This example was based on https://www.deeplearningbook.org/contents/mlp.html 6.1

https://www.deeplearningbook.org/contents/mlp.html

 We will use RelLU for g and H, = 2

. Layer 0is HY = o(XWOT 4 pO1T)

Layer O: pre-activations

 Consider the pre-activations

XWOT 4 bO1T given the following:

WO — [1 1] b© = [0 _I]T

1 1

XWOT 4 p1T =

0
2
1
1

—1

1
0
0

X — @W(O)T 4+ b(O)lT — s XWOT 4 pO1T

® classO
B class1l

The two class 1 points are now
on top of each other

XWOT £ pOT ——» g — HO

Layer O: activations

- 0) O)T O)q T] ® class
. Layer 0is H? = g(XWOT 4 pO1T) z o desso
* RelLU moves all negative values in each
dimension to zero
* This makes things linearly separable In _
our example :) <
0 ® =]
0 —1 0 O
XWOT L 01T = |2 1 O = |2 1
Wb 1 0 1 0 .
1 O 1 O -1 0 1 2

Layer 1

. Layer 1 HY = HOWWT 4 p(D1T s just a
linear classifier

. The n"* row of HV is f(x") and points are
classified according to the sign of f(X)

wh =11 =-21' bM =05

—0.5
—0.5

0.5 Correct classifications!

0.5
» The decision boundary is f(x) = 0

HD —

® classO
B class1

Decision boundaries

The decision boundary is non-linear in the original and pre-activation space

Data space
® classO
B classl
H o
; :

Pre-activation space

® classO
B class1

hi%

Activation space

® classO
B class1l

Learning the parameters of a 2 layer MLP

D

we can push a dataset X € RY*” through a 2 layer MLP using

e Forx € |
HO — g(XW(O)T n b(O)lT)
HD = HOWDT L p(1T

* The learning process is very similar to that of linear models

* We pick an appropriate loss function L e.g. cross-entropy for classification

* We then find the parameters that minimise the loss

« i.e. we solve minimise L where @ = {W(O), b(O), W(l), b(l)}
0

The chain rule

« We can solve minimise L for @ = {W(O), b, W b(l)} using GD
0

oL oL oL oL
OWO’~ ob©® " oW~ oD
* \We can obtain expressions for these using the chain rule

HO — g(XW(O)T n b(O)lT)

j

» This involves computing gradients VL = {

HO = HOWDT 4 p(O1T o, oHW oL oL oHD
aw<1> ~ GHD oW ob() gHD ghM

X HO H(l)

— e — oL oH'" oHY oL oL oH" oH®
aw<0> ~ GHOD 9HO© gWO) ob©® gHMD ogHO gh©)

W(O) b© W(l) b

Automatic differentiation

 Computers can perform automatic differentiation (/auto-diff/autograd/magic)

 We don’t need to work out closed form expressions for any derivatives!
oL oL oHW
WD gHD W)
oL oL oH" oHY
OW©O gHM gHO gWO)

oL oL oH"
obh) gH gb() NOOOOILYOU

P CANT OPTIMISE NETWORKS
oL _ oL o oH wirhiourunpersranomcBAUTOGRADGOBRRR
ob® oHD gHO® gb®) MATRIXNCALCULUSI

Why an MLP?

 We’ve gone from learning your own feature to this two layer MLP
H(X) = h©® — g(W(O)X n b(O))
fix) = hY) = WRO 4 b

* There is a practical reason: apart from the activation function it’s all just matrix
multiplies which computers are very good at

* There is also theory in the form of a universal approximation theorem

 This basically tells us an MLP with at least 2 layers (and appropriate g) can
represent a wide range of functions when they have the right weights

See https://www.deeplearningbook.org/contents/mip.html 6.4.1 and https://cognitivemedium.com/magic_paper/assets/Hornik.pdf

https://www.deeplearningbook.org/contents/mlp.html

Too good to be true?

S:t‘e'p1: C—T War M P to solve intelllaenee
Step2: o that to-solve-eveprtthina-else

* The universal approximation theorem tells us an appropriate 2 layer MLP
exists for lots of functions

* |t doesn’t tell us how wide the hidden layer should be or what weights to use!

* To make things worse, losses involving DNNs are generally non-convex :(

https://arxiv.org/pdf/1712.09913.pdf

Going deeper

 Empirically, deeper networks (those with more layers) tend to work better up
to a certain point

P NEE? 1060

4
’

A

* Now Is good time to mention that deep learning is very empirical
* There are rules of thumb for e.g. the number of layers, layer widths

 However, often you need to try stuff out (or use existing models)

https://knowyourmeme.com/photos/531557-we-need-to-go-deeper

Learning the parameters of an £ layer MLP

» For a dataset matrix X our £ layer MLP is given by:
HO = g(l)(H(l_l)VV(l)T + b(l)lT) for[=0,1,.... £ — 1

. HY = X and g(l) IS @ non-linear activation function e.g. ReLU for all layers
but the last, which is just the identity

. The loss function takes in HZ 1 (and some labels/targets) and we want to

solve minimise L where @ = {W®_ b }5/” —1
l H(g | I
— L

0
HO HD gZ-3) H(Z-2)
W(O)I, b W<1>I, b WZ-2) b(Sf -2) W&-1 b(Sf D

X — fO = Al Sl . {7 ",

A A

More chain rule!

ol. oL \Z-1
OWO’ ob® }

 We start with the last layer and can use the chain rule to write
oL oL oHW™D oL oL oH&™D
WD~ gH&-D gW&Z-D) gb(@-1 gH&-D ghZ-D
« These expression are very similar so I’ll just consider the W gradients for
now, knowing we can obtain the b gradients in the same way

H(Sf 1)
— L

WO, p©O WO, D WZ-2) b(g -2) W@-1) b(sf D

. 1o use GD we need to compute VyL = {

0) (1) (Z£-3) (Z£-2)
X —— f(O) H_, f(l) H H > f(fZ 2) I_I_,

A A

What do you notice?

oL 7)) § (S
OWZ-D — GHZ-1) gW(&Z-1)
oL oL oHZ~D gH-=—?
W=D~ gHE-D gH(Z-2D gW(Z-2)
oL oL oH“Y~D oHZ~ oH
IWZ-3) gHE-) gH(Z-2 gH(Z-3) gW(Z-3)
oL oL oH“~D gHZ 2 gHZ—) gHZ—
W@ — JHEZ-D gHZ-2 gH(Z-3) gHZ-H gW(Z—4)
oL oL oH“=D gH“=2 gH“ =3 gH“=* gHZ—>

IWEZ—) — gHE-D gHE-2 gHE-3) gHZ-H gH(Z-5) gW(Z-5)

oL

OW(Z-D)
oL

oL

aH(Q—l)

oW (Z-2)
oL

oL

" OHZ-) gW(&Z-D

oH-~D oH~%

oW (=—3)
oL

oL

T JH@-) gHZ-2 gW(&-2)

oHZ~Y oHZ~2) gHZ—)

oW (-4
oL

oL

~ OHZ-1) gH(Z-2) gH(Z—3) gW(Z-3)
oHZ 1 oH 2 gHZ) gH—%

oL

- oHZ-D oH(Z-2) gH(Z-3) gH(Z-4) ogW(Z—-4)
oH“ D gH 2 gHZ) gH& =9 gHZ—>)

oW (Z-3)

e We can write

. We can iteratively compute GU=D — GO
same terms

oL

IWD

= SH@-D gHZ-2 JH(@—3) gH(Z—3 gH@—5) gW (&)

[
) oHY

oL

W)

where G =
0

oHY
oH(-D

H(-Z-1

The same terms keep cropping up

aH(SZ m—1)

m=1

so we don’t have to repeatedly calculate the

The backpropagation algorithm

| | | oL oL ,_,
. Goal: Obtain gradients VoL = { WO m}lzo
oL
, (z-ny___ 9%
Compute G A&

e Foriin-1,%-2,...,1,0:
(1) (1)
oL 0 oH oL 0 oH

WO 2 awo M orn T G TN
dH(l)

JH(-D)

1. Compute

2. Compute GV~ = GY

See Murphy Section 13.3 for a more detailed and rigorous description!

Backpropagation is efficient

* (Going forward, you have to keep all the activations in memory

e (Going backward, you can throw stuff away after it’s used to update G

W2 p(£-2) WD p&-D

oL y oL oL v oL oL v oL oL vy OL
OWO)’ gh©) OWD’ gb(D) OW(Z-2)’ gb(Z-2 JWZ-D’ gh(Z-D)

SGD for neural network training

NXD

Storing lots of activations for a whole dataset X € | can be expensive. Because
of this SGD is typically used for DNN training. The procedure is:

 |nitialise DNN weights at random e.g. from a normal distribution
* For e in range(E):
. Split dataset into equal sized mini-batches { X\?, y(b)}lbté at random
» For b in range(B):
1. Compute V,L(0, X y®)y ysing backpropagation

D Update H — 0 — V 0 L(H, X(b), y(b)) Each outer loop across the

whole dataset is known as
an epoch

SGD + momentum

* As the loss functions for DNNs are non-convex it is possible to get stuck in an
undesirable local minimum as the gradient is zero

* |In SGD + momentum we update parameters using the current gradient and an
exponential moving average of previous gradients

* This makes it harder to get stuck, and tends to accelerate training

e At time step t:
1. Compute V,L(0,_., X?, y?)) using backpropagation
2. Update velocity v,_; = uv,_; + VoL(0,_;, X, y)

3. Update@,_.., =0_, —av,_..

u is the momentum

Other optimisers are available

e e.9.the Adam optimiser (pictured right)

 Almost all take the gradients from backprop and do
something with them

* You don’t need to know about any optimisers other than GD and
SGD (+ momentum) for this course

o See https://pytorch.org/docs/stable/optim.htmli#algorithms
If you’re curious how others function

https://pytorch.org/docs/stable/optim.html#algorithms

DNNSs can overfit

 DNNs can represent lots of functions. They are high capacity models
* They are very susceptible to overfitting!
» Remember, we care about a model’s ability to generalise to unseen data

 Regularisation is very important in DNNs!

--- train error
— test error

\
| Underfitting Overfitting
\

Error

Capacity

Early stopping

* Fitting to the test set is not allowed

e We can however look at the
validation set throughout training

as a proxy 0e

e The model starts to overfit once 0.4-

validation loss stops decreasing

with train loss go"?’_
= 0.2-
* We can stop training at this point
0.1-
0.0-

This looks very similar to the last figure!

Over training models tend to underfit and
then overfit to the training data

MNIST training for a 2 layer MLP

---= train loss
—— validation loss

\\
[
-~
-

Weight decay

 Models that overfit tend to have large weights

 To mitigate this, we multiply all the weights by 1 — A whenever we perform an
update step in e.g. SGD

« A is the amount of weight decay as is usually very small e.g. 10~

* This Is basically equivalent to having L2 regularisation in the loss function

Ensembles as regularisers

lon trees tended to overfl

IS

Recall that dec

IS by forming an ensemble in the form of a random forest

ted th

Iga
» Ensemble learning is a form of regularisation

e Wem

tly so we don’t want to train lots of them

INiNg IS COS

e But DNN tra

Dropout

* At each iteration of training, each hidden neuron has a chance (usually 50%)
of being switched off for that forward and backward pass

 We can view this as cheaply training an ensemble of subnetworks

XS

lteration O

lteration 1

See https://www.deeplearningbook.org/contents/reqularization.html 7.12 for more details

https://www.deeplearningbook.org/contents/regularization.html

Summary

 We have considered learning our features instead of using a pre-existing map
 We have seen how the structure of a DNN facilitates feature learning

 We have looked at the MLP architecture and worked through some examples
* We have found out how to train an MLP using backpropagation + SGD

 We looked at different ways to regularise DNNs

