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Week 9: Deep neural networks



• We learnt about about -NN and decision trees


• We found out how an ensemble of decision trees called a random forest can 
be created using bagging and feature subsampling

k

Recap

mean concave points ≤ 0.051
entropy = 0.958
samples = 381

value = [145, 236]
class = benign

worst radius ≤ 16.83
entropy = 0.293
samples = 233
value = [12, 221]
class = benign

True

worst perimeter ≤ 114.45
entropy = 0.473
samples = 148
value = [133, 15]
class = malignant

False

entropy = 0.157
samples = 219
value = [5, 214]
class = benign

entropy = 1.0
samples = 14
value = [7, 7]

class = malignant

entropy = 0.98
samples = 36
value = [21, 15]
class = malignant

entropy = 0.0
samples = 112
value = [112, 0]
class = malignant



Deep Learning



Linear regression

• Given training data  ( , ) we can learn a model:


•  s.t. 


• We want  to map the data to a space where we can fit a hyperplane to it

{x(n), y(n)}N−1
n=0 x ∈ ℝD y ∈ ℝ1

f(x) = w⊤ϕ(x) + b y(n) ≈ f(x(n))∀n

ϕ

ϕ

ϕ(x) = x2



(Binary) linear classifiers

• Given training data  ( , ) we can learn a model:


•  s.t. the hyperplane  separates the classes


• We want  to map the data to a space where classes can be separated by a 
hyperplane

{x(n), y(n)}N−1
n=0 x ∈ ℝD y ∈ {0,1}

f(x) = w⊤ϕ(x) + b f(x) = 0

ϕ

ϕ(x) = [
∥x∥

tan−1 x1

x0
]

ϕ



Multi-dimensional output 

• What if we want to perform multi-class classification or regress to a multi-
dimensional output ? 


 with  and 


becomes


  with with  and 


• We will assume this is the default output from now on as it is more general


f(x) ∈ ℝK

f(x) = w⊤ϕ(x) + b w ∈ ℝZ b ∈ ℝ1

f(x) = Wϕ(x) + b W ∈ ℝZ×K b ∈ ℝK



Feature learning

• There are plenty of off-the-shelf feature maps  


• But how do we know if we’ve got the best one for a particular problem?


• Trying to design  for a new problem can be tedious or impossible!


• What if we could learn  directly from our training data?


• This is what deep learning entails. It’s feature learning!

ϕ

ϕ

ϕ



Deep (feedforward) neural networks (DNNs)

• These are non-linear models consisting of  functional layers





• The first  layers form a learnable feature map . These are 
known as hidden layers





• The last layer is a linear transformation of the features (this can perform e.g. 
linear classification or linear regression)


ℒ

f(x) = f (ℒ−1) ∘ f (ℒ−2) ∘ … ∘ f (1) ∘ f (0)(x)

ℒ − 1 ϕ(x) ∈ ℝZ

ϕ(x) = f (ℒ−2)…f (1) f (0)(x)

f(x) = f (ℒ−1)(ϕ(x)) = W(ℒ−1)ϕ(x) + b(ℒ−1)
f (0) f (1) f (ℒ−2) f (ℒ−1)x f(x)ϕ(x)



• A DNN takes the form





• An MLP is a network where each hidden layer output  is


 for 


• The layer input is the output of the previous layer 


• This undergoes a linear transformation


• It then passes through a non-linear element-wise function 


f(x) = f (ℒ−1) ∘ f (ℒ−2) ∘ … ∘ f (1) ∘ f (0)(x)

h(l) ∈ ℝHl

h(l) = f (l)(h(l−1)) = g(W(l)h(l−1) + b(l)) l = 0,1,…, ℒ − 2

h(l−1) ∈ ℝHl−1

g
 is called an activation function and layer outputs are called activations 

 
Layers in an MLP are known as fully-connected or dense layers

g

The multilayer perceptron (MLP)

f (0) f (1) f (ℒ−2) f (ℒ−1)x f(x)h(0) h(ℒ−2)h(1) h(ℒ−3)

ϕ(x)
h(ℒ−1)



Two layer MLP

• For a 2 layer MLP with  and  we have:





 


• We can write the whole MLP as 


• We have to decide on the dimensionality of  (the width of the hidden layer)


• We also have to pick a non-linearity 

x ∈ ℝD f(x) ∈ ℝK

ϕ(x) = h(0) = g(W(0)x + b(0))

f(x) = h(1) = W(1)h(0) + b(1)

f(x) = W(1)g(W(0)x + b(0)) + b(1)

h(0)

g



Activation functions

• These make our function non-linear. Without them an MLP collapses into a 
single linear transformation


• They are element-wise functions which means each element of the input 
vector is individually transformed

g(z) = max(0,z)g(z) =
1

1 + e−z

ReLU or “rectified linear 
unit” is the most prevalent 

activation function 

and is what will we 

consider for the rest of 
this course






 

h(0) = g(W(0)x + b(0))

h(1) = W(1)h(0) + b(1)

Alternate view of our MLP

x0

x1

h(0)
0

h(0)
1

h(0)
2

h(1)
0

h(1)
1

• Sometimes you see MLPs drawn as graphs


• Here, the elements of 
 are represented by 

nodes


• Stuff is happening at the node inputs!


• It follows that , 


• And also that , 


• Sometimes these nodes are referred to as neurons


x ∈ ℝ2, h(0) ∈ ℝ3, h(1) ∈ ℝ2

W(0) ∈ ℝ3×2 b(0) ∈ ℝ3

W(1) ∈ ℝ2×3 b(1) ∈ ℝ2



MLP: Layer 0 

h(0) =
h (0)

0

h(0)
1

h (0)
2

= g(W(0)x + b(0)) = g(

w(0)
0,0 w(0)

0,1

w(0)
1,0 w(0)

1,1

w(0)
2,0 w(0)

2,1

[
x0
x1] +

b(0)
0

b(0)
1

b(0)
2

) • Consider one of the neurons of 


• It receives a weighted sum of the input 
neurons, to which a bias is added


• This quantity is known as a pre-activation and it 
goes into an activation function 


• If we are using ReLU activations 
 then the pre-activation must 

be positive to pass through


• If this happens we say that the neuron has 
activated

h(0)

g

g(z) = max(0,z)
x0

x1

h(0)
0

h(0)
1

h(0)
2

w(0)
0,0

w(0)
2,1

+b(0)
0 g∑

w(0)
0,1 +b(0)

1 g∑

+b(0)
2 g∑

w(0)
2,0

w(0)
1,0

w(0)
1,1



MLP: Layer 1 

h(1) = [
h (1)

0

h(1)
1 ] = W(1)h(0) + b(1) = [

w(1)
0,0 w(1)

0,1 w(1)
0,2

w(1)
1,0 w(1)

1,1 w(1)
1,2]

h (0)
0

h(0)
1

h (0)
2

+ [
b(1)

0

b(1)
1 ] • There is no activation function for the last 

layer


• It’s just a matrix multiplied by a vector plus 
another vector 


• The previous layer was the same + a non-
linearity


w(1)
0,0

h(1)
0

+b(1)
0∑

https://www.reddit.com/r/machinelearningmemes/comments/hst89w/always_has_been/

h(1)
1

+b(1)
1∑

h(0)
0

h(0)
1

h(0)
2

w(1)
1,0

w(1)
0,1

w(1)
1,1

w(1)
0,2

w(1)
1,2



Batch processing

• Consider a  dataset matrix 


• If we want to collect all the layer 0 outputs in a  matrix  then we 
can compute 


• We can similarly collect all the layer 1 outputs in a  matrix using



• This is how it’s done in PyTorch which is the deep learning framework we’ll 
use

N × D X = [x(0)⊤ x(1)⊤ …x(N−1)⊤]⊤

N × H0 H(0)

H(0) = g(XW(0)⊤ + b(0)1⊤)

N × Z
H(1) = H(0)W(1)⊤ + b(1)1⊤

 is a vector of ones the 
same size as whatever it 
is being multiplied by :)

1



Binary classification with a 2 layer MLP

• This data is not linearly separable 


• We will run through how a 2 layer 
MLP can deal with this in batch


• 


• 


• Rows of  are feature vectors


• Rows of  are the corresponding 
 for each feature vector

H(0) = g(XW(0)⊤ + b(0)1⊤)

H(1) = H(0)W(1)⊤ + b(1)1⊤

H(0)

H(1)

f(x)

This is equivalent to learning XOR. This example was based on https://www.deeplearningbook.org/contents/mlp.html 6.1

X =

0 0
1 1
0 1
1 0

y =

0
0
1
1

For binary classification  is a vector,  is a vector, and  is a 
scalar but I’m keeping the more general notation for multi-class

H(1) W(1) b(1)

https://www.deeplearningbook.org/contents/mlp.html


Layer 0: pre-activations

• We will use ReLU for  and 


• Layer 0 is 


• Consider the pre-activations 
 given the following:

g H0 = 2

H(0) = g(XW(0)⊤ + b(0)1⊤)

XW(0)⊤ + b(0)1⊤

W(0) = [1 1
1 1] b(0) = [0 −1]⊤

XW(0)⊤ + b(0)1⊤ =

0 −1
2 1
1 0
1 0

X @W(0)⊤ + b(0)1⊤ XW(0)⊤ + b(0)1⊤

The two class 1 points are now 
on top of each other



Layer 0: activations

• Layer 0 is 


• ReLU moves all negative values in each 
dimension to zero


• This makes things linearly separable in 
our example :) 

H(0) = g(XW(0)⊤ + b(0)1⊤)

H(0) =

0 0
2 1
1 0
1 0

g H(0)XW(0)⊤ + b(0)1⊤

XW(0)⊤ + b(0)1⊤ =

0 −1
2 1
1 0
1 0



Layer 1

• Layer 1  is just a 
linear classifier 


• The  row of  is  and points are 
classified according to the sign of 


• The decision boundary is 

H(1) = H(0)W(1)⊤ + b(1)1⊤

nth H(1) f(x(n))
f(x)

f(x) = 0

H(1) =

−0.5
−0.5
0.5
0.5

W(1) = [1 −2]⊤ b(1) = 0.5

Correct classifications!

f(x) = 0

@W(1) + b(1)H(0) H(1)



Decision boundaries
The decision boundary is non-linear in the original and pre-activation space

Data space Pre-activation space Activation space



Learning the parameters of a 2 layer MLP

• For  we can push a dataset  through a 2 layer MLP using 





 


• The learning process is very similar to that of linear models


• We pick an appropriate loss function  e.g. cross-entropy for classification


• We then find the parameters that minimise the loss


• i.e. we solve  where 

x ∈ ℝD X ∈ ℝN×D

H(0) = g(XW(0)⊤ + b(0)1⊤)

H(1) = H(0)W(1)⊤ + b(1)1⊤

L

minimise
θ

L θ = {W(0), b(0), W(1), b(1)}



The chain rule

• We can solve  for  using GD


• This involves computing gradients 


• We can obtain expressions for these using the chain rule

minimise
θ

L θ = {W(0), b(0), W(1), b(1)}

∇θL = {
∂L

∂W(0)
,

∂L
∂b(0)

,
∂L

∂W(1)
,

∂L
∂b(1)

}

∂L
∂W(1)

=
∂L

∂H(1)

∂H(1)

∂W(1)

H(0) = g(XW(0)⊤ + b(0)1⊤)
H(1) = H(0)W(1)⊤ + b(1)1⊤

f (0) f (1)X H(0)
loss

W(0), b(0) W(1), b(1)

LH(1)

∂L
∂W(0)

=
∂L

∂H(1)

∂H(1)

∂H(0)

∂H(0)

∂W(0)

∂L
∂b(1)

=
∂L

∂H(1)

∂H(1)

∂b(1)

∂L
∂b(0)

=
∂L

∂H(1)

∂H(1)

∂H(0)

∂H(0)

∂b(0)



Automatic differentiation 
• Computers can perform automatic differentiation (/auto-diff/autograd/magic)


• We don’t need to work out closed form expressions for any derivatives!
∂L

∂W(1)
=

∂L
∂H(1)

∂H(1)

∂W(1)

∂L
∂W(0)

=
∂L

∂H(1)

∂H(1)

∂H(0)

∂H(0)

∂W(0)

∂L
∂b(1)

=
∂L

∂H(1)

∂H(1)

∂b(1)

∂L
∂b(0)

=
∂L

∂H(1)

∂H(1)

∂H(0)

∂H(0)

∂b(0)



Why an MLP?

• We’ve gone from learning your own feature to this two layer MLP





 


• There is a practical reason: apart from the activation function it’s all just matrix 
multiplies which computers are very good at


• There is also theory in the form of a universal approximation theorem


• This basically tells us an MLP with at least 2 layers (and appropriate  can 
represent a wide range of functions when they have the right weights

ϕ(x) = h(0) = g(W(0)x + b(0))

f(x) = h(1) = W(1)h(0) + b(1)

g)

See https://www.deeplearningbook.org/contents/mlp.html 6.4.1 and  https://cognitivemedium.com/magic_paper/assets/Hornik.pdf

https://www.deeplearningbook.org/contents/mlp.html


Too good to be true?
Step 1: Use a 2 layer MLP to solve intelligence


Step 2: Use that to solve everything else


• The universal approximation theorem tells us an appropriate 2 layer MLP 
exists for lots of functions


• It doesn’t tell us how wide the hidden layer should be or what weights to use!


• To make things worse, losses involving DNNs are generally non-convex :(

https://arxiv.org/pdf/1712.09913.pdf



Going deeper

• Empirically, deeper networks (those with more layers) tend to work better up 
to a certain point


• Now is good time to mention that deep learning is very empirical


• There are rules of thumb for e.g. the number of layers, layer widths


• However, often you need to try stuff out (or use existing models)

https://knowyourmeme.com/photos/531557-we-need-to-go-deeper



Learning the parameters of an  layer MLPℒ

• For a dataset matrix  our  layer MLP is given by: 


 for 


•  and  is a non-linear activation function e.g. ReLU for all layers 
but the last, which is just the identity 


• The loss function takes in  (and some labels/targets) and we want to 
solve  where 

X ℒ

H(l) = g(l)(H(l−1)W(l)⊤ + b(l)1⊤) l = 0,1,…, ℒ − 1

H(0) = X g(l)

H(ℒ−1)

minimise
θ

L θ = {W(l), b(l)}ℒ−1
l=0

f (0) f (1) f (ℒ−2) f (ℒ−1)X
H(0) H(ℒ−2)H(1) H(ℒ−3) H(ℒ−1)

loss L

W(0), b(0) W(1), b(1) W(ℒ−2), b(ℒ−2) W(ℒ−1), b(ℒ−1)



More chain rule!

• To use GD we need to compute 


• We start with the last layer and can use the chain rule to write 


• These expression are very similar so I’ll just consider the  gradients for 
now, knowing we can obtain the  gradients in the same way

∇θL = { ∂L
∂W(l)

,
∂L

∂b(l) }
ℒ−1

l=0

W
b

f (0) f (1) f (ℒ−2) f (ℒ−1)X
H(0) H(ℒ−2)H(1) H(ℒ−3)

loss L

W(0), b(0) W(1), b(1) W(ℒ−2), b(ℒ−2) W(ℒ−1), b(ℒ−1)

∂L
∂W(ℒ−1)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂W(ℒ−1)

∂L
∂b(ℒ−1)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂b(ℒ−1)

H(ℒ−1)



What do you notice?
∂L

∂W(ℒ−1)
=

∂L
∂H(ℒ−1)

∂H(ℒ−1)

∂W(ℒ−1)

∂L
∂W(ℒ−2)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂W(ℒ−2)

∂L
∂W(ℒ−3)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂W(ℒ−3)

∂L
∂W(ℒ−4)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂H(ℒ−4)

∂H(ℒ−4)

∂W(ℒ−4)

∂L
∂W(ℒ−5)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂H(ℒ−4)

∂H(ℒ−4)

∂H(ℒ−5)

∂H(ℒ−5)

∂W(ℒ−5)



• We can write where 


• We can iteratively compute  so we don’t have to repeatedly calculate the 
same terms

∂L
∂W(l)

= G(l) ∂H(l)

∂W(l)
G(l) =

∂L
∂H(ℒ−1)

ℒ−l−1

∏
m=1

∂H(ℒ−m)

∂H(ℒ−m−1)

G(l−1) = G(l) ∂H(l)

∂H(l−1)

The same terms keep cropping up
∂L

∂W(ℒ−1)
=

∂L
∂H(ℒ−1)

∂H(ℒ−1)

∂W(ℒ−1)

∂L
∂W(ℒ−2)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂W(ℒ−2)

∂L
∂W(ℒ−3)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂W(ℒ−3)

∂L
∂W(ℒ−4)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂H(ℒ−4)

∂H(ℒ−4)

∂W(ℒ−4)

∂L
∂W(ℒ−5)

=
∂L

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂H(ℒ−4)

∂H(ℒ−4)

∂H(ℒ−5)

∂H(ℒ−5)

∂W(ℒ−5)



The backpropagation algorithm

• Goal: Obtain gradients 


• Compute 


• For  in :


1. Compute  and 


2. Compute 

∇θL = {
∂L

∂W(l)
,

∂L
∂b(l)

}ℒ−1
l=0

G(ℒ−1) =
∂L

∂H(ℒ−1)

l ℒ − 1,ℒ − 2,…,1,0

∂L
∂W(l)

= G(l) ∂H(l)

∂W(l)

∂L
∂b(l)

= G(l) ∂H(l)

∂b(l)

G(l−1) = G(l) ∂H(l)

∂H(l−1)

See Murphy Section 13.3 for a more detailed and rigorous description!



Backpropagation is efficient 

• Going forward, you have to keep all the activations in memory


• Going backward, you can throw stuff away after it’s used to update  G(l)

f (0) f (1) f (ℒ−2) f (ℒ−1)X
H(0) H(ℒ−2)H(1) H(ℒ−3)

loss LW(0), b(0) W(1), b(1) W(ℒ−2), b(ℒ−2) W(ℒ−1), b(ℒ−1)

H(ℒ−1)

f (0) f (1) f (ℒ−2) f (ℒ−1)G(0) G(ℒ−2)G(1) G(ℒ−3) G(ℒ−1)

∂L
∂W(ℒ−1)

,
∂L

∂b(ℒ−1)
∂L

∂W(ℒ−2)
,

∂L
∂b(ℒ−2)

∂L
∂W(1)

,
∂L

∂b(1)

∂L
∂W(0)

,
∂L

∂b(0)



SGD for neural network training

Storing lots of activations for a whole dataset  can be expensive. Because 
of this SGD is typically used for DNN training. The procedure is:


• Initialise DNN weights at random e.g. from a normal distribution


• For e in range(E):


• Split dataset into equal sized mini-batches  at random


• For  in range(B):


1. Compute  using backpropagation 


2. Update 

X ∈ ℝN×D

{X(b), y(b)}B−1
b=0

b

∇θL(θ, X(b), y(b))

θ ← θ − α∇θL(θ, X(b), y(b)) Each outer loop across the 
whole dataset is known as 

an epoch



SGD + momentum
• As the loss functions for DNNs are non-convex it is possible to get stuck in an 

undesirable local minimum as the gradient is zero


• In SGD + momentum we update parameters using the current gradient and an 
exponential moving average of previous gradients


• This makes it harder to get stuck, and tends to accelerate training


• At time step t:


1. Compute  using backpropagation 


2. Update velocity 


3. Update 

∇θL(θt=i, X(b), y(b))

vt=i+1 = μvt=i + ∇θL(θt=i, X(b), y(b))

θt=i+1 = θt=i − αvt=i+1
 is the momentumμ



Other optimisers are available

• e.g. the Adam optimiser (pictured right)


• Almost all take the gradients from backprop and do 
something with them


• You don’t need to know about any optimisers other than GD and 
SGD (+ momentum) for this course


• See https://pytorch.org/docs/stable/optim.html#algorithms  
if you’re curious how others function

https://pytorch.org/docs/stable/optim.html#algorithms


DNNs can overfit

• DNNs can represent lots of functions. They are high capacity models


• They are very susceptible to overfitting!


• Remember, we care about a model’s ability to generalise to unseen data


• Regularisation is very important in DNNs!



Early stopping

• Fitting to the test set is not allowed


• We can however look at the 
validation set throughout training 
as a proxy


• The model starts to overfit once 
validation loss stops decreasing 
with train loss


• We can stop training at this point

This looks very similar to the last figure!


Over training models tend to underfit and 
then overfit to the training data



Weight decay

• Models that overfit tend to have large weights


• To mitigate this, we multiply all the weights by  whenever we perform an 
update step in e.g. SGD


•  is the amount of weight decay as is usually very small e.g. 


• This is basically equivalent to having L2 regularisation in the loss function

1 − λ

λ 10−4



Ensembles as regularisers

• Recall that decision trees tended to overfit


• We mitigated this by forming an ensemble in the form of a random forest


• Ensemble learning is a form of regularisation


• But DNN training is costly so we don’t want to train lots of them



• At each iteration of training, each hidden neuron has a chance (usually 50%) 
of being switched off for that forward and backward pass


• We can view this as cheaply training an ensemble of subnetworks

Dropout

See https://www.deeplearningbook.org/contents/regularization.html 7.12 for more details

Iteration 0

Iteration 1

https://www.deeplearningbook.org/contents/regularization.html


Summary

• We have considered learning our features instead of using a pre-existing map


• We have seen how the structure of a DNN facilitates feature learning


• We have looked at the MLP architecture and worked through some examples


• We have found out how to train an MLP using backpropagation + SGD


• We looked at different ways to regularise DNNs


