Data Analysis and Machine Learning 4 Week 9: Deep neural networks

Elliot J. Crowley, 20th March 2023

of EDINBURGH

Recap

be created using bagging and feature subsampling

• We found out how an ensemble of decision trees called a random forest can

Deep Learning

Linear regression

•
$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}) + b \text{ s.t. } y^{(n)} \approx f(\mathbf{x})$$

• Given training data $\{\mathbf{x}^{(n)}, y^{(n)}\}_{n=0}^{N-1}$ ($\mathbf{x} \in \mathbb{R}^{D}$, $y \in \mathbb{R}^{1}$) we can learn a model: $(\mathbf{x}^{(n)}) \forall n$

• We want ϕ to map the data to a space where we can fit a hyperplane to it

(Binary) linear classifiers

- Given training data $\{\mathbf{x}^{(n)}, y^{(n)}\}_{n=0}^{N-1}$ ($\mathbf{x} \in \mathbb{R}^{D}, y \in \{0,1\}$) we can learn a model:
 - $f(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + b$ s.t. the hyperplane $f(\mathbf{x}) = 0$ separates the classes
- We want ϕ to map the data to a space where classes can be separated by a hyperplane

Multi-dimensional output

 What if we want to perform multi-class classification or regress to a multidimensional output $f(\mathbf{x}) \in \mathbb{R}^{K}$?

 $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + b$ with $\mathbf{w} \in \mathbb{R}^{\mathbb{Z}}$ and $b \in \mathbb{R}^{\mathbb{I}}$

becomes

 $f(\mathbf{x}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b}$ with with $\mathbf{W} \in \mathbb{R}^{Z \times K}$ and $\mathbf{b} \in \mathbb{R}^{K}$

We will assume this is the default output from now on as it is more general

Feature learning

- There are plenty of off-the-shelf feature maps ϕ
- But how do we know if we've got the best one for a particular problem?
- Trying to design ϕ for a new problem can be tedious or impossible!
- What if we could learn ϕ directly from our training data?
- This is what deep learning entails. It's feature learning!

Deep (feedforward) neural networks (DNNs)

- These are non-linear models consisting of ${\mathscr L}$ functional layers

$$f(\mathbf{x}) = f^{(\mathscr{L}-1)} \circ f^{(\mathscr{L}-2)} \circ \dots \circ f^{(1)} \circ f^{(1)}$$

• The first $\mathscr{L} - 1$ layers form a **learnable** feature map $\phi(\mathbf{x}) \in \mathbb{R}^{Z}$. These are known as **hidden layers**

$$\phi(\mathbf{x}) = f^{(\mathscr{L}-2)} \dots f^{(1)} f^{(0)}(\mathbf{x})$$

• The last layer is a linear transformation of the features (this can perform e.g. linear classification or linear regression)

$$f(\mathbf{x}) = f^{(\mathscr{L}-1)}(\phi(\mathbf{x})) = \mathbf{W}^{(\mathscr{L}-1)}\phi(\mathbf{x}) + \mathbf{b}^{(\mathscr{L}-1)} \mathbf{x} \to f^{(0)} \to f^{(1)} \longrightarrow f^{(2-2)} \xrightarrow{\phi(\mathbf{x})} f^{(2-1)} \mathbf{x}$$

 $\circ f^{(0)}(\mathbf{X})$

The multilayer perceptron (MLP)

• A

A DNN takes the form

$$f(\mathbf{x}) = f^{(\mathscr{L}-1)} \circ f^{(\mathscr{L}-2)} \circ \dots \circ f^{(1)} \circ f^{(0)}(\mathbf{x})$$

$$\mathbf{x} \longrightarrow f^{(0)} \longrightarrow f^{(1)} f^{(1)} \longrightarrow f^{(1)} h^{(\mathscr{L}-3)} = h^{(\mathscr{L}-3)} f^{(\mathscr{L}-2)} \xrightarrow{h^{(\mathscr{L}-2)}} f^{(\mathscr{L}-1)} \xrightarrow{h^{(\mathscr{L}-2)}} f^{(\mathscr{L}-2)} \xrightarrow{h^{(\mathscr{L}-2$$

- An MLP is a network where each hidden layer output $\mathbf{h}^{(l)} \in \mathbb{R}^{H_l}$ is $\mathbf{h}^{(l)} = f^{(l)}(\mathbf{h}^{(l-1)}) = g(\mathbf{W}^{(l)}\mathbf{h}^{(l-1)} + \mathbf{b}^{(l-1)})$
 - The layer input is the output of the previous layer $\mathbf{h}^{(l-1)} \in \mathbb{R}^{H_{l-1}}$
 - This undergoes a linear transformation
 - It then passes through a **non-linear** element-wise function g g is called an activation function and layer outputs are called activations

^{*l*)}) for
$$l = 0, 1, ..., \mathcal{L} - 2$$

Layers in an MLP are known as fully-connected or dense layers

Two layer MLP

- For a 2 layer MLP with $\mathbf{x} \in \mathbb{R}^D$ and $f(\mathbf{x}) \in \mathbb{R}^K$ we have: $\phi(\mathbf{x}) = \mathbf{h}^{(0)} = g(\mathbf{W}^{(0)}\mathbf{x} + \mathbf{b}^{(0)})$ $f(\mathbf{x}) = \mathbf{h}^{(1)} = \mathbf{W}^{(1)}\mathbf{h}^{(0)} + \mathbf{b}^{(1)}$
- We can write the whole MLP as $f(\mathbf{x}) = \mathbf{W}^{(1)}g(\mathbf{W}^{(0)}\mathbf{x} + \mathbf{b}^{(0)}) + \mathbf{b}^{(1)}$
- We also have to pick a non-linearity g

• We have to decide on the dimensionality of $\mathbf{h}^{(0)}$ (the **width** of the hidden layer)

Activation functions

- single linear transformation
- vector is individually transformed

These make our function non-linear. Without them an MLP collapses into a

• They are element-wise functions which means each element of the input

ReLU or "rectified linear unit" is the most prevalent activation function and is what will we consider for the rest of this course

Alternate view of our MLP

- $\mathbf{h}^{(0)} = g(\mathbf{W}^{(0)}\mathbf{x} + \mathbf{b}^{(0)})$ Sometimes you see MLPs drawn as graphs
- Here, the elements of $\mathbf{h}^{(1)} = \mathbf{W}^{(1)}\mathbf{h}^{(0)} + \mathbf{h}^{(1)}$ $\mathbf{x} \in \mathbb{R}^2$, $\mathbf{h}^{(0)} \in \mathbb{R}^3$, $\mathbf{h}^{(1)} \in \mathbb{R}^2$ are represented by nodes
- $h_{0}^{(0)}$ • Stuff is happening at the node inputs! $h_0^{(1)}$ • It follows that $\mathbf{W}^{(0)} \in \mathbb{R}^{3 \times 2}$, $\mathbf{b}^{(0)} \in \mathbb{R}^3$ x_0 $h_{1}^{(0)}$ • And also that $\mathbf{W}^{(1)} \in \mathbb{R}^{2 \times 3}$, $\mathbf{b}^{(1)} \in \mathbb{R}^2$ $h_{1}^{(1)}$ X_1 Sometimes these nodes are referred to as neurons $h_{\gamma}^{(0)}$

MLP: Layer 0

- Consider one of the neurons of $\boldsymbol{h}^{(0)}$

 It receives a weighted sum of the input neurons, to which a bias is added

• This quantity is known as a *pre-activation* and it goes into an activation function g

• If we are using ReLU activations $g(z) = \max(0,z)$ then the pre-activation must be positive to pass through

If this happens we say that the neuron has activated

MLP: Layer 1

$$\mathbf{h}^{(1)} = \begin{bmatrix} h_0^{(1)} \\ h_1^{(1)} \end{bmatrix} = \mathbf{W}^{(1)} \mathbf{h}^{(0)} + \mathbf{b}^{(1)} = \begin{bmatrix} w_{0,0}^{(1)} & w_{0,1}^{(1)} & w_{0,2}^{(1)} \\ w_{1,0}^{(1)} & w_{1,1}^{(1)} & w_{1,2}^{(1)} \end{bmatrix} \begin{bmatrix} h_0^{(0)} \\ h_1^{(0)} \\ h_2^{(0)} \end{bmatrix} + \begin{bmatrix} b_0^{(1)} \\ b_1^{(1)} \end{bmatrix} \quad \bullet \quad \mathbf{Th}^{(1)} \mathbf{h}^{(0)} \mathbf{$$

nere is no activation function for the last /er

• It's just a matrix multiplied by a vector plus another vector

The previous layer was the same + a nonlinearity

https://www.reddit.com/r/machinelearningmemes/comments/hst89w/always_has_been/

Batch processing

- Consider a $N \times D$ dataset matrix $\mathbf{X} = \begin{bmatrix} \mathbf{X}^{(0)\top} & \mathbf{X}^{(1)\top} & \dots \mathbf{X}^{(N-1)\top} \end{bmatrix}^{\top}$
- If we want to collect all the layer 0 outputs in a $N \times H_0$ matrix $\mathbf{H}^{(0)}$ then we can compute $\mathbf{H}^{(0)} = g(\mathbf{X}\mathbf{W}^{(0)\top} + \mathbf{b}^{(0)}\mathbf{1}^{\top})$
- We can similarly collect all the layer 1 outputs in a $N \times Z$ matrix using $\mathbf{H}^{(1)} = \mathbf{H}^{(0)}\mathbf{W}^{(1)\top} + \mathbf{b}^{(1)}\mathbf{1}^{\top}$
- This is how it's done in PyTorch which is the deep learning framework we'll use

1 is a vector of ones the same size as whatever it is being multiplied by :)

Binary classification with a 2 layer MLP

- This data is not linearly separable
- We will run through how a 2 layer MLP can deal with this in batch
- $\mathbf{H}^{(0)} = g(\mathbf{X}\mathbf{W}^{(0)\top} + \mathbf{b}^{(0)}\mathbf{1}^{\top})$
- $\mathbf{H}^{(1)} = \mathbf{H}^{(0)} \mathbf{W}^{(1)\top} + \mathbf{b}^{(1)} \mathbf{1}^{\top}$
- Rows of $\mathbf{H}^{(0)}$ are feature vectors
- Rows of $\mathbf{H}^{(1)}$ are the corresponding $f(\mathbf{x})$ for each feature vector

This is equivalent to learning XOR. This example was based on https://www.deeplearningbook.org/contents/mlp.html 6.1

Layer 0: pre-activations

- We will use ReLU for g and $H_0 = 2$
- Layer 0 is $\mathbf{H}^{(0)} = g(\mathbf{X}\mathbf{W}^{(0)\top} + \mathbf{b}^{(0)}\mathbf{1}^{\top})$
- Consider the pre-activations $\mathbf{X}\mathbf{W}^{(0)\top} + \mathbf{b}^{(0)}\mathbf{1}^{\top} \text{ given the following:}$ $\mathbf{W}^{(0)} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{b}^{(0)} = \begin{bmatrix} 0 & -1 \end{bmatrix}^{\top}$ $\mathbf{X}\mathbf{W}^{(0)\top} + \mathbf{b}^{(0)}\mathbf{1}^{\top} = \begin{bmatrix} 0 & -1 \\ 2 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$

Layer 0: activations

- Layer 0 is $\mathbf{H}^{(0)} = g(\mathbf{X}\mathbf{W}^{(0)\top} + \mathbf{b}^{(0)}\mathbf{1}^{\top})$
- ReLU moves all negative values in each dimension to zero
- This makes things linearly separable in our example :)

$$\mathbf{X}\mathbf{W}^{(0)\top} + \mathbf{b}^{(0)}\mathbf{1}^{\top} = \begin{bmatrix} 0 & -1 \\ 2 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} \qquad \mathbf{H}^{(0)} = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Layer 1

- Layer 1 $\mathbf{H}^{(1)} = \mathbf{H}^{(0)} \mathbf{W}^{(1)\top} + \mathbf{b}^{(1)} \mathbf{1}^{\top}$ is just a linear classifier
- The n^{th} row of $\mathbf{H}^{(1)}$ is $f(\mathbf{x}^{(n)})$ and points are classified according to the sign of $f(\mathbf{x})$

$$\mathbf{W}^{(1)} = \begin{bmatrix} 1 & -2 \end{bmatrix}^{\mathsf{T}} \qquad \mathbf{b}^{(1)} = 0.5$$
$$\mathbf{H}^{(1)} = \begin{bmatrix} -0.5 \\ -0.5 \\ 0.5 \\ 0.5 \end{bmatrix} \qquad \text{Correct classifications}$$

• The decision boundary is $f(\mathbf{x}) = 0$

Decision boundaries

The decision boundary is non-linear in the original and pre-activation space

Learning the parameters of a 2 layer MLP

- For $\mathbf{x} \in \mathbb{R}^D$ we can push a dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$ through a 2 layer MLP using $\mathbf{H}^{(0)} = g(\mathbf{X}\mathbf{W}^{(0)\top} + \mathbf{b}^{(0)}\mathbf{1}^{\top})$ $\mathbf{H}^{(1)} = \mathbf{H}^{(0)}\mathbf{W}^{(1)\top} + \mathbf{b}^{(1)}\mathbf{1}^{\top}$
- The learning process is very similar to that of linear models
- We pick an appropriate loss function L e.g. cross-entropy for classification
- We then find the parameters that minimise the loss
- i.e. we solve minimise L where $\theta = \{\mathbf{W}^{(0)}, \mathbf{b}^{(0)}, \mathbf{W}^{(1)}, \mathbf{b}^{(1)}\}$

The chain rule

- We can solve minimise L for $\theta = \{ \mathbf{W}^{(0)}, \mathbf{b}^{(0)}, \mathbf{W}^{(1)}, \mathbf{b}^{(1)} \}$ using GD θ
- This involves computing gradients
- We can obtain expressions for these using the chain rule

$$\nabla_{\boldsymbol{\theta}} L = \{ \frac{\partial L}{\partial \mathbf{W}^{(0)}}, \frac{\partial L}{\partial \mathbf{b}^{(0)}}, \frac{\partial L}{\partial \mathbf{W}^{(1)}}, \frac{\partial L}{\partial \mathbf{b}^{(1)}} \}$$

$\partial L \partial \mathbf{H}^{(1)}$	∂L	$\partial L \partial \mathbf{H}^{(1)}$
$\partial \mathbf{H}^{(1)} \partial \mathbf{W}^{(1)}$	$\partial \mathbf{b}^{(1)}$	$\partial \mathbf{H}^{(1)} \ \partial \mathbf{b}^{(1)}$
$\partial L \partial \mathbf{H}^{(1)} \partial \mathbf{H}^{(0)}$	∂L	$\partial L \partial \mathbf{H}^{(1)} \partial \mathbf{H}$
$\partial \mathbf{H}^{(1)} \partial \mathbf{H}^{(0)} \partial \mathbf{W}^{(0)}$	$\partial \mathbf{b}^{(0)}$	$\partial \mathbf{H}^{(1)} \partial \mathbf{H}^{(0)} \partial \mathbf{b}$

Automatic differentiation

- Computers can perform automatic differentiation (/auto-diff/autograd/magic)
- We don't need to work out closed form expressions for any derivatives!

∂L	$\partial L \partial \mathbf{H}^{(1)}$	
$\partial \mathbf{W}^{(1)}$	$\partial \mathbf{H}^{(1)} \partial \mathbf{W}^{(1)}$	
∂L	$\partial L \partial \mathbf{H}^{(1)} \partial \mathbf{H}^{(0)}$	7
$\partial \mathbf{W}^{(0)}$	$\partial \mathbf{H}^{(1)} \partial \mathbf{H}^{(0)} \partial \mathbf{W}^{(0)}$)
∂L	$\partial L \partial \mathbf{H}^{(1)}$	0
$\partial \mathbf{b}^{(1)}$	$\partial \mathbf{H}^{(1)} \partial \mathbf{b}^{(1)}$	
∂L	$\partial L \partial \mathbf{H}^{(1)} \ \partial \mathbf{H}^{(0)}$	<u>OTTOPI</u>
$\partial \mathbf{b}^{(0)}$ =	$\partial \mathbf{H}^{(1)} \partial \mathbf{H}^{(0)} \partial \mathbf{b}^{(0)}$	

imgflip.com

Why an MLP?

We've gone from learning your own feature to this two layer MLP

$$\phi(\mathbf{x}) = \mathbf{h}^{(0)} = g(\mathbf{W}^{(0)}\mathbf{x} + \mathbf{b}^{(0)})$$
$$f(\mathbf{x}) = \mathbf{h}^{(1)} = \mathbf{W}^{(1)}\mathbf{h}^{(0)} + \mathbf{b}^{(1)}$$

- There is a practical reason: apart from the activation function it's all just matrix multiplies which computers are very good at
- There is also theory in the form of a universal approximation theorem
- This basically tells us an MLP with at least 2 layers (and appropriate g) can represent a wide range of functions when they have the right weights

See https://cognitivemedium.com/magic_paper/assets/Hornik.pdf

Too good to be true?

Step 1: Use a 2 layer MLP to solve intelligence

Step 2: Use that to solve everything else

- The universal approximation theorem tells us an appropriate 2 layer MLP exists for lots of functions
- It doesn't tell us how wide the hidden layer should be or what weights to use!
- To make things worse, losses involving DNNs are generally non-convex :(

https://arxiv.org/pdf/1712.09913.pdf

Going deeper

to a certain point

- Now is good time to mention that deep learning is very empirical
- There are rules of thumb for e.g. the number of layers, layer widths
- However, often you need to try stuff out (or use existing models)

Empirically, deeper networks (those with more layers) tend to work better up

https://knowyourmeme.com/photos/531557-we-need-to-go-deeper

Learning the parameters of an ${\mathscr L}$ layer MLP

- For a dataset matrix \mathbf{X} our \mathscr{L} layer MLP is given by: $\mathbf{H}^{(l)} = g^{(l)}(\mathbf{H}^{(l-1)}\mathbf{W}^{(l)\top} + \mathbf{b}^{(l)}\mathbf{1}^{\top}) \text{ for } l = 0, 1, ..., \mathscr{L} - 1$
- $\mathbf{H}^{(0)} = \mathbf{X}$ and $g^{(l)}$ is a non-linear activation function e.g. ReLU for all layers but the last, which is just the identity
- The loss function takes in $\mathbf{H}^{(\mathscr{L}-1)}$ (and some labels/targets) and we want to solve minimise L where $\boldsymbol{\theta} = {\{\mathbf{W}^{(l)}, \mathbf{b}^{(l)}\}_{l=0}^{\mathscr{L}-1}}$

More chain rule!

- To use GD we need to compute V_{θ}
- We start with the last layer and can use the chain rule to write $\frac{\partial L}{\partial \mathbf{W}^{(\mathcal{L}-1)}} = \frac{\partial L}{\partial \mathbf{H}^{(\mathcal{L}-1)}} \frac{\partial \mathbf{H}^{(\mathcal{L}-1)}}{\partial \mathbf{W}^{(\mathcal{L}-1)}}$
- now, knowing we can obtain the **b** gradients in the same way

$$D_{\mathbf{b}}L = \left\{\frac{\partial L}{\partial \mathbf{W}^{(l)}}, \frac{\partial L}{\partial \mathbf{b}^{(l)}}\right\}_{l=0}^{\mathscr{L}-1}$$

∂L	∂L	$\partial \mathbf{H}^{(\mathscr{L}-1)}$
$\partial \mathbf{b}^{(\mathscr{L}-1)}$	$\partial \mathbf{H}^{(\mathscr{L}-1)}$	$\partial \mathbf{b}^{(\mathscr{L}-1)}$

• These expression are very similar so I'll just consider the W gradients for

$$\begin{array}{c} \widehat{f} \\ \widehat$$

What do you notice? $\partial L \quad \partial \mathbf{H}^{(\mathscr{L}-1)}$ ∂L $\partial \mathbf{W}(\mathcal{L}^{-1}) = \partial \mathbf{H}(\mathcal{L}^{-1}) \partial \mathbf{W}(\mathcal{L}^{-1})$

- $\partial L \quad \partial \mathbf{H}^{(\mathscr{L}-1)} \ \partial \mathbf{H}^{(\mathscr{L}-2)}$ ∂L $\partial \mathbf{W}(\mathcal{L}-2) = \partial \mathbf{H}(\mathcal{L}-1) \partial \mathbf{H}(\mathcal{L}-2) \partial \mathbf{W}(\mathcal{L}-2)$ $\partial L \quad \partial \mathbf{H}^{(\mathscr{L}-1)} \partial \mathbf{H}^{(\mathscr{L}-2)} \partial \mathbf{H}^{(\mathscr{L}-3)}$ ∂L
- $\partial \mathbf{W}(\mathcal{L}-3) = \partial \mathbf{H}(\mathcal{L}-1) \partial \mathbf{H}(\mathcal{L}-2) \partial \mathbf{H}(\mathcal{L}-3) \partial \mathbf{W}(\mathcal{L}-3)$
- $\partial L \quad \partial \mathbf{H}^{(\mathscr{L}-1)} \partial \mathbf{H}^{(\mathscr{L}-2)} \partial \mathbf{H}^{(\mathscr{L}-3)} \partial \mathbf{H}^{(\mathscr{L}-4)}$ ∂L
- $\partial \mathbf{W}(\mathscr{L}-4) = \partial \mathbf{H}(\mathscr{L}-1) \partial \mathbf{H}(\mathscr{L}-2) \partial \mathbf{H}(\mathscr{L}-3) \partial \mathbf{H}(\mathscr{L}-4) \partial \mathbf{W}(\mathscr{L}-4)$
- ∂L $\partial \mathbf{W}(\mathcal{L}-5) = \partial \mathbf{H}(\mathcal{L}-1) \ \partial \mathbf{H}(\mathcal{L}-2) \ \partial \mathbf{H}(\mathcal{L}-3) \ \partial \mathbf{H}(\mathcal{L}-4) \ \partial \mathbf{H}(\mathcal{L}-5) \ \partial \mathbf{W}(\mathcal{L}-5)$

$\partial L \quad \partial \mathbf{H}^{(\mathscr{L}-1)} \ \partial \mathbf{H}^{(\mathscr{L}-2)} \ \partial \mathbf{H}^{(\mathscr{L}-3)} \ \partial \mathbf{H}^{(\mathscr{L}-4)} \ \partial \mathbf{H}^{(\mathscr{L}-5)}$

The same terms keep cropping up

same terms

$$\stackrel{(j)}{=} \frac{\partial L}{\partial \mathbf{H}^{(\mathcal{L}-1)}} \prod_{m=1}^{\mathcal{L}-l-1} \frac{\partial \mathbf{H}^{(\mathcal{L}-m)}}{\partial \mathbf{H}^{(\mathcal{L}-m-1)}}$$

We can iteratively compute $\mathbf{G}^{(l-1)} = \mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{H}^{(l-1)}}$ so we don't have to repeatedly calculate the same terms

The backpropagation algorithm

- Goal: Obtain gradients $\nabla_{\theta} L = \{\frac{\partial L}{\partial \mathbf{W}(l)}, \frac{\partial L}{\partial \mathbf{h}(l)}\}_{l=0}^{\mathscr{L}-1}$
- Compute $\mathbf{G}^{(\mathscr{L}-1)} = \frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}}$
- For l in $\mathscr{L} 1.\mathscr{L} 2....1.0$:
 - 1. Compute $\frac{\partial L}{\partial \mathbf{W}^{(l)}} = \mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{W}^{(l)}}$ and $\frac{\partial L}{\partial \mathbf{h}^{(l)}} = \mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{h}^{(l)}}$ 2. Compute $\mathbf{G}^{(l-1)} = \mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{H}^{(l-1)}}$

See Murphy Section 13.3 for a more detailed and rigorous description!

Backpropagation is efficient

- Going forward, you have to keep all the activations in memory
- Going backward, you can throw stuff away after it's used to update $\mathbf{G}^{(l)}$

SGD for neural network training

of this SGD is typically used for DNN training. The procedure is:

- Initialise DNN weights at random e.g. from a normal distribution
- For e in range(E):
 - Split dataset into equal sized mini-b
 - For b in range(B):

1. Compute $\nabla_{\theta} L(\theta, \mathbf{X}^{(b)}, \mathbf{y}^{(b)})$ using backpropagation

2. Update $\theta \leftarrow \theta - \alpha \nabla_{\theta} L(\theta, \mathbf{X}^{(b)}, \mathbf{y}^{(b)})$

Storing lots of activations for a whole dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$ can be expensive. Because

batches
$$\{\mathbf{X}^{(b)}, \mathbf{y}^{(b)}\}_{b=0}^{B-1}$$
 at random

Each outer loop across the whole dataset is known as an epoch

SGD + momentum

- As the loss functions for DNNs are non-convex it is possible to get stuck in an undesirable local minimum as the gradient is zero
- In SGD + momentum we update parameters using the current gradient and an exponential moving average of previous gradients
- This makes it harder to get stuck, and tends to accelerate training
- At time step t:
 - 1. Compute $\nabla_{\theta} L(\theta_{t=i}, \mathbf{X}^{(b)}, \mathbf{y}^{(b)})$ using backpropagation
 - 2. Update velocity $v_{t=i+1} = \mu v_{t=i}$
 - 3. Update $\theta_{t=i+1} = \theta_{t=i} \alpha v_{t=i+1}$

+
$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{t=i}, \mathbf{X}^{(b)}, \mathbf{y}^{(b)})$$

 μ is the momentum

Other optimisers are available

- e.g. the Adam optimiser (pictured right)
- Almost all take the gradients from backprop and do something with them
- You don't need to know about any optimisers other than GD and SGD (+ momentum) for this course
- See <u>https://pytorch.org/docs/stable/optim.html#algorithms</u> if you're curious how others function

DNNs can overfit

- DNNs can represent lots of functions. They are high capacity models
- They are very susceptible to overfitting!
- Remember, we care about a model's ability to generalise to unseen data
- Regularisation is very important in DNNs!

Early stopping

- Fitting to the test set is not allowed
- We can however look at the validation set throughout training as a proxy
- The model starts to overfit once validation loss stops decreasing with train loss
- We can stop training at this point

This looks very similar to the last figure!

Over training models tend to underfit and then overfit to the training data

Weight decay

- Models that overfit tend to have large weights
- To mitigate this, we multiply all the weights by $1-\lambda$ whenever we perform an update step in e.g. SGD
- λ is the amount of weight decay as is usually very small e.g. 10^{-4}
- This is basically equivalent to having L2 regularisation in the loss function

Ensembles as regularisers

- Recall that decision trees tended to overfit
- We mitigated this by forming an ensemble in the form of a random forest
- Ensemble learning is a form of regularisation
- But DNN training is costly so we don't want to train lots of them

Dropout

- of being switched off for that forward and backward pass
- We can view this as cheaply training an ensemble of subnetworks

• At each iteration of training, each hidden neuron has a chance (usually 50%)

See <u>https://www.deeplearningbook.org/contents/regularization.html</u> 7.12 for more details

Summary

- We have considered learning our features instead of using a pre-existing map
- We have seen how the structure of a DNN facilitates feature learning
- We have looked at the MLP architecture and worked through some examples
- We have found out how to train an MLP using backpropagation + SGD
- We looked at different ways to regularise DNNs