Data Analysis and Machine Learning 4

Week 9: Deep neural networks

Recap

- We learnt about about k-NN and decision trees

- We found out how an ensemble of decision trees called a random forest can be created using bagging and feature subsampling

Deep Learning

Linear regression

- Given training data $\left\{\mathbf{x}^{(n)}, y^{(n)}\right\}_{n=0}^{N-1}\left(\mathbf{x} \in \mathbb{R}^{D}, y \in \mathbb{R}^{1}\right)$ we can learn a model:
- $f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b$ s.t. $y^{(n)} \approx f\left(\mathbf{x}^{(n)}\right) \forall n$
- We want ϕ to map the data to a space where we can fit a hyperplane to it

(Binary) linear classifiers

- Given training data $\left\{\mathbf{x}^{(n)}, y^{(n)}\right\}_{n=0}^{N-1}\left(\mathbf{x} \in \mathbb{R}^{D}, y \in\{0,1\}\right)$ we can learn a model:
- $f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b$ s.t. the hyperplane $f(\mathbf{x})=0$ separates the classes
- We want ϕ to map the data to a space where classes can be separated by a hyperplane

Multi-dimensional output

- What if we want to perform multi-class classification or regress to a multidimensional output $f(\mathbf{x}) \in \mathbb{R}^{K}$?

$$
f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})+b \text { with } \mathbf{w} \in \mathbb{R}^{Z} \text { and } b \in \mathbb{R}^{1}
$$

becomes
$f(\mathbf{x})=\mathbf{W} \phi(\mathbf{x})+\mathbf{b}$ with with $\mathbf{W} \in \mathbb{R}^{Z \times K}$ and $\mathbf{b} \in \mathbb{R}^{K}$

- We will assume this is the default output from now on as it is more general

Feature learning

- There are plenty of off-the-shelf feature maps ϕ
- But how do we know if we've got the best one for a particular problem?
- Trying to design ϕ for a new problem can be tedious or impossible!
- What if we could learn ϕ directly from our training data?
- This is what deep learning entails. It's feature learning!

Deep (feedforward) neural networks (DNNs)

- These are non-linear models consisting of \mathscr{L} functional layers

$$
f(\mathbf{x})=f^{(\mathscr{L}-1)} \circ f^{(\mathscr{L}-2)} \circ \ldots \circ f^{(1)} \circ f^{(0)}(\mathbf{x})
$$

- The first $\mathscr{L}-1$ layers form a learnable feature $\operatorname{map} \phi(\mathbf{x}) \in \mathbb{R}^{Z}$. These are known as hidden layers

$$
\phi(\mathbf{x})=f^{(\mathscr{L}-2)} \ldots f^{(1)} f^{(0)}(\mathbf{x})
$$

- The last layer is a linear transformation of the features (this can perform e.g. linear classification or linear regression)

$$
f(\mathbf{x})=f^{(\mathscr{L}-1)}(\phi(\mathbf{x}))=\mathbf{W}^{(\mathscr{L}-1)} \phi(\mathbf{x})+\mathbf{b}^{(\mathscr{L}-1)} \mathbf{x} \longrightarrow f^{(0)} \longrightarrow f^{(1)} \cdots \rightarrow f^{((x-2)} \xrightarrow{\phi(\mathbf{x})} f^{(x-1)} \longrightarrow f(\mathbf{x})
$$

The multilayer perceptron (MLP)

- A DNN takes the form

$$
f(\mathbf{x})=f^{(\mathscr{L}-1)} \circ f^{(\mathscr{L}-2)} \circ \ldots \circ f^{(1)} \circ f^{(0)}(\mathbf{x})
$$

- An MLP is a network where each hidden layer output $\mathbf{h}^{(l)} \in \mathbb{R}^{H_{l}}$ is

$$
\mathbf{h}^{(l)}=f^{(l)}\left(\mathbf{h}^{(l-1)}\right)=g\left(\mathbf{W}^{(l)} \mathbf{h}^{(l-1)}+\mathbf{b}^{(l)}\right) \text { for } l=0,1, \ldots, \mathscr{L}-2
$$

- The layer input is the output of the previous layer $\mathbf{h}^{(l-1)} \in \mathbb{R}^{H_{l-1}}$
- This undergoes a linear transformation
- It then passes through a non-linear element-wise function g

Layers in an MLP are known as fully-connected or dense layers

Two layer MLP

- For a 2 layer MLP with $\mathbf{x} \in \mathbb{R}^{D}$ and $f(\mathbf{x}) \in \mathbb{R}^{K}$ we have:

$$
\begin{aligned}
& \phi(\mathbf{x})=\mathbf{h}^{(0)}=g\left(\mathbf{W}^{(0)} \mathbf{x}+\mathbf{b}^{(0)}\right) \\
& f(\mathbf{x})=\mathbf{h}^{(1)}=\mathbf{W}^{(1)} \mathbf{h}^{(0)}+\mathbf{b}^{(1)}
\end{aligned}
$$

- We can write the whole MLP as $f(\mathbf{x})=\mathbf{W}^{(1)} g\left(\mathbf{W}^{(0)} \mathbf{x}+\mathbf{b}^{(0)}\right)+\mathbf{b}^{(1)}$
- We have to decide on the dimensionality of $\mathbf{h}^{(0)}$ (the width of the hidden layer)
- We also have to pick a non-linearity g

Activation functions

- These make our function non-linear. Without them an MLP collapses into a single linear transformation
- They are element-wise functions which means each element of the input vector is individually transformed

ReLU or "rectified linear unit" is the most prevalent activation function and is what will we
$g(z)=\max (0, z)$ consider for the rest of this course

Alternate view of our MLP

$$
\begin{aligned}
& \mathbf{h}^{(0)}=g\left(\mathbf{W}^{(0)} \mathbf{x}+\mathbf{b}^{(0)}\right) \\
& \mathbf{h}^{(1)}=\mathbf{W}^{(1)} \mathbf{h}^{(0)}+\mathbf{b}^{(1)}
\end{aligned}
$$

- Sometimes you see MLPs drawn as graphs
- Here, the elements of $\mathbf{x} \in \mathbb{R}^{2}, \mathbf{h}^{(0)} \in \mathbb{R}^{3}, \mathbf{h}^{(1)} \in \mathbb{R}^{2}$ are represented by nodes
- Stuff is happening at the node inputs!
- It follows that $\mathbf{W}^{(0)} \in \mathbb{R}^{3 \times 2}, \mathbf{b}^{(0)} \in \mathbb{R}^{3}$
- And also that $\mathbf{W}^{(1)} \in \mathbb{R}^{2 \times 3}, \mathbf{b}^{(1)} \in \mathbb{R}^{2}$
- Sometimes these nodes are referred to as neurons

MLP: Layer 0

$\mathbf{h}^{(0)}=\left[\begin{array}{c}h_{0}^{(0)} \\ h_{1}^{(0)} \\ h_{2}^{(0)}\end{array}\right]=g\left(\mathbf{W}^{(0)} \mathbf{x}+\mathbf{b}^{(0)}\right)=g\left(\left[\begin{array}{ll}w_{0,0}^{(0)} & w_{0,1}^{(0)} \\ w_{1,0}^{(0)} & w_{1,1}^{(0)} \\ w_{2,0}^{(0)} & w_{2,1}^{(0)}\end{array}\right]\left[\begin{array}{l}x_{0} \\ x_{1}\end{array}\right]+\left[\begin{array}{c}b_{0}^{(0)} \\ b_{1}^{(0)} \\ b_{2}^{(0)}\end{array}\right]\right)$

- Consider one of the neurons of $\mathbf{h}^{(0)}$
- It receives a weighted sum of the input neurons, to which a bias is added
- This quantity is known as a pre-activation and it goes into an activation function g
- If we are using ReLU activations $g(z)=\max (0, z)$ then the pre-activation must be positive to pass through
- If this happens we say that the neuron has activated

MLP: Layer 1

$$
\mathbf{h}^{(1)}=\left[\begin{array}{l}
h_{0}^{(1)} \\
h_{1}^{(1)}
\end{array}\right]=\mathbf{W}^{(1)} \mathbf{h}^{(\mathbf{0})}+\mathbf{b}^{(1)}=\left[\begin{array}{lll}
w_{0,0}^{(1)} & w_{0,1}^{(1)} & w_{0,2}^{(1)} \\
w_{1,0}^{(1)} & w_{1,1}^{(1)} & w_{1,2}^{(1)}
\end{array}\right]\left[\begin{array}{l}
h_{0}^{(0)} \\
h_{1}^{(0)} \\
h_{2}^{(0)}
\end{array}\right]+\left[\begin{array}{l}
b_{0}^{(1)} \\
b_{1}^{(1)}
\end{array}\right]
$$

- There is no activation function for the last layer
- It's just a matrix multiplied by a vector plus another vector
- The previous layer was the same + a nonlinearity

Batch processing

- Consider a $N \times D$ dataset matrix $\mathbf{X}=\left[\begin{array}{lll}\mathbf{x}^{(0) \top} & \mathbf{x}^{(1) \top} & \left.\ldots \mathbf{x}^{(N-1) \top}\right]^{\top}\end{array}\right.$
- If we want to collect all the layer 0 outputs in a $N \times H_{0}$ matrix $\mathbf{H}^{(0)}$ then we can compute $\mathbf{H}^{(0)}=g\left(\mathbf{X} \mathbf{W}^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}\right)$
- We can similarly collect all the layer 1 outputs in a $N \times Z$ matrix using $\mathbf{H}^{(1)}=\mathbf{H}^{(0)} \mathbf{W}^{(1) \top}+\mathbf{b}^{(1)} \mathbf{1}^{\top}$
- This is how it's done in PyTorch which is the deep learning framework we'll use

Binary classification with a 2 layer MLP

- This data is not linearly separable
- We will run through how a 2 layer MLP can deal with this in batch
- $\mathbf{H}^{(0)}=g\left(\mathbf{X} \mathbf{W}^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}\right)$
- $\mathbf{H}^{(1)}=\mathbf{H}^{(0)} \mathbf{W}^{(1) \top}+\mathbf{b}^{(1)} \mathbf{1}^{\top}$
- Rows of $\mathbf{H}^{(0)}$ are feature vectors
- Rows of $\mathbf{H}^{(1)}$ are the corresponding $f(\mathbf{x})$ for each feature vector

For binary classification $\mathbf{H}^{(1)}$ is a vector, $\mathbf{W}^{(1)}$ is a vector, and $\mathbf{b}^{(1)}$ is a scalar but I'm keeping the more general notation for multi-class

Layer 0: pre-activations

- We will use ReLU for g and $H_{0}=2$
- Layer 0 is $\mathbf{H}^{(0)}=g\left(\mathbf{X W}{ }^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}\right)$
- Consider the pre-activations $\mathbf{X} \mathbf{W}^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}$ given the following:

$$
\begin{gathered}
\mathbf{W}^{(0)}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad \mathbf{b}^{(0)}=\left[\begin{array}{ll}
0 & -1
\end{array}\right]^{\top} \\
\mathbf{X W}^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}=\left[\begin{array}{cc}
0 & -1 \\
2 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

Layer 0: activations

- Layer 0 is $\mathbf{H}^{(0)}=g\left(\mathbf{X} \mathbf{W}^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}\right)$
- ReLU moves all negative values in each dimension to zero
- This makes things linearly separable in our example :)

$$
\mathbf{X W}^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}=\left[\begin{array}{cc}
0 & -1 \\
2 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right] \quad \mathbf{H}^{(0)}=\left[\begin{array}{ll}
0 & 0 \\
2 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right]
$$

Layer 1

$\mathbf{H}^{(0)} \longrightarrow @ \mathbf{W}^{(1)}+\mathbf{b}^{(1)} \longrightarrow \mathbf{H}^{(1)}$

- Layer $1 \mathbf{H}^{(1)}=\mathbf{H}^{(0)} \mathbf{W}^{(1) \top}+\mathbf{b}^{(1)} \mathbf{1}^{\top}$ is just a linear classifier
- The $n^{\text {th }}$ row of $\mathbf{H}^{(1)}$ is $f\left(\mathbf{x}^{(n)}\right)$ and points are classified according to the sign of $f(\mathbf{x})$

$$
\begin{aligned}
\mathbf{W}^{(1)} & =\left[\begin{array}{ll}
1 & -2
\end{array}\right]^{\top} \quad \mathbf{b}^{(1)}=0.5 \\
\mathbf{H}^{(1)} & =\left[\begin{array}{c}
-0.5 \\
-0.5 \\
0.5 \\
0.5
\end{array}\right] \quad \text { Correct classifications! }
\end{aligned}
$$

- The decision boundary is $f(\mathbf{x})=0$

Decision boundaries

The decision boundary is non-linear in the original and pre-activation space

Learning the parameters of a 2 layer MLP

- For $\mathbf{x} \in \mathbb{R}^{D}$ we can push a dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$ through a 2 layer MLP using

$$
\begin{aligned}
& \mathbf{H}^{(0)}=g\left(\mathbf{X} \mathbf{W}^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}\right) \\
& \mathbf{H}^{(1)}=\mathbf{H}^{(0)} \mathbf{W}^{(1) \top}+\mathbf{b}^{(1)} \mathbf{1}^{\top}
\end{aligned}
$$

- The learning process is very similar to that of linear models
- We pick an appropriate loss function L e.g. cross-entropy for classification
- We then find the parameters that minimise the loss
- i.e. we solve minimise L where $\boldsymbol{\theta}=\left\{\mathbf{W}^{(0)}, \mathbf{b}^{(0)}, \mathbf{W}^{(1)}, \mathbf{b}^{(1)}\right\}$

The chain rule

- We can solve minimise L for $\boldsymbol{\theta}=\left\{\mathbf{W}^{(0)}, \mathbf{b}^{(0)}, \mathbf{W}^{(1)}, \mathbf{b}^{(1)}\right\}$ using GD $\boldsymbol{\theta}$
- This involves computing gradients $\nabla_{\boldsymbol{\theta}} L=\left\{\frac{\partial L}{\partial \mathbf{W}^{(0)}}, \frac{\partial L}{\partial \mathbf{b}^{(0)}}, \frac{\partial L}{\partial \mathbf{W}^{(1)}}, \frac{\partial L}{\partial \mathbf{b}^{(1)}}\right\}$
- We can obtain expressions for these using the chain rule

$$
\mathbf{H}^{(0)}=g\left(\mathbf{X} \mathbf{W}^{(0) \top}+\mathbf{b}^{(0)} \mathbf{1}^{\top}\right)
$$

$$
\begin{aligned}
\frac{\partial L}{\partial \mathbf{W}^{(1)}} & =\frac{\partial L}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{W}^{(1)}} & \frac{\partial L}{\partial \mathbf{b}^{(1)}} & =\frac{\partial L}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{b}^{(1)}} \\
\frac{\partial L}{\partial \mathbf{W}^{(0)}} & =\frac{\partial L}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{H}^{(0)}} \frac{\partial \mathbf{H}^{(0)}}{\partial \mathbf{W}^{(0)}} & \frac{\partial L}{\partial \mathbf{b}^{(0)}} & =\frac{\partial L}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{H}^{(0)}} \frac{\partial \mathbf{H}^{(0)}}{\partial \mathbf{b}^{(0)}}
\end{aligned}
$$

$$
\mathbf{W}^{(0)}, \mathbf{b}^{(0)} \quad \mathbf{W}^{(1)}, \mathbf{b}^{(1)}
$$

Automatic differentiation

- Computers can perform automatic differentiation (/auto-diff/autograd/magic)
- We don't need to work out closed form expressions for any derivatives!

$$
\begin{aligned}
\frac{\partial L}{\partial \mathbf{W}^{(1)}} & =\frac{\partial L}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{W}^{(1)}} \\
\frac{\partial L}{\partial \mathbf{W}^{(0)}} & =\frac{\partial L}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{H}^{(0)}} \frac{\partial \mathbf{H}^{(0)}}{\partial \mathbf{W}^{(0)}} \\
\frac{\partial L}{\partial \mathbf{b}^{(1)}} & =\frac{\partial L}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{b}^{(1)}} \\
\frac{\partial L}{\partial \mathbf{b}^{(0)}} & =\frac{\partial L}{\partial \mathbf{H}^{(1)}} \frac{\partial \mathbf{H}^{(1)}}{\partial \mathbf{H}^{(0)}} \frac{\partial \mathbf{H}^{(0)}}{\partial \mathbf{b}^{(0)}}
\end{aligned}
$$

Why an MLP?

- We've gone from learning your own feature to this two layer MLP

$$
\begin{aligned}
& \phi(\mathbf{x})=\mathbf{h}^{(0)}=g\left(\mathbf{W}^{(0)} \mathbf{x}+\mathbf{b}^{(0)}\right) \\
& f(\mathbf{x})=\mathbf{h}^{(1)}=\mathbf{W}^{(1)} \mathbf{h}^{(0)}+\mathbf{b}^{(1)}
\end{aligned}
$$

- There is a practical reason: apart from the activation function it's all just matrix multiplies which computers are very good at
- There is also theory in the form of a universal approximation theorem
- This basically tells us an MLP with at least 2 layers (and appropriate g) can represent a wide range of functions when they have the right weights

Too good to be true?

Step 1: Use a 2 layer MLP to solve intelligence

Step 2: Use that to solve everything else

- The universal approximation theorem tells us an appropriate 2 layer MLP exists for lots of functions
- It doesn't tell us how wide the hidden layer should be or what weights to use!
- To make things worse, losses involving DNNs are generally non-convex :(

Going deeper

- Empirically, deeper networks (those with more layers) tend to work better up to a certain point

- Now is good time to mention that deep learning is very empirical
- There are rules of thumb for e.g. the number of layers, layer widths
- However, often you need to try stuff out (or use existing models)

Learning the parameters of an \mathscr{L} layer MLP

- For a dataset matrix \mathbf{X} our \mathscr{L} layer MLP is given by:

$$
\mathbf{H}^{(l)}=g^{(l)}\left(\mathbf{H}^{(l-1)} \mathbf{W}^{(l)^{\top}}+\mathbf{b}^{(l)} \mathbf{1}^{\top}\right) \text { for } l=0,1, \ldots, \mathscr{L}-1
$$

- $\mathbf{H}^{(0)}=\mathbf{X}$ and $g^{(l)}$ is a non-linear activation function e.g. ReLU for all layers but the last, which is just the identity
- The loss function takes in $\mathbf{H}^{(\mathscr{L}-1)}$ (and some labels/targets) and we want to solve minimise L where $\boldsymbol{\theta}=\left\{\mathbf{W}^{(l)}, \mathbf{b}^{(l)}\right\}_{l=0}^{\mathscr{L}-1}$

More chain rule!

- To use GD we need to compute $\nabla_{\theta} L=\left\{\frac{\partial L}{\partial \mathbf{W}^{(l)}}, \frac{\partial L}{\partial \mathbf{b}^{(l)}}\right\}_{l=0}^{\mathscr{L}-1}$
- We start with the last layer and can use the chain rule to write

$$
\frac{\partial L}{\partial \mathbf{W}^{(\mathcal{L}-1)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{W}^{(\mathscr{L}-1)}} \quad \frac{\partial L}{\partial \mathbf{b}^{(\mathscr{L}-1)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathcal{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{b}^{(\mathscr{L}-1)}}
$$

- These expression are very similar so l'll just consider the \mathbf{W} gradients for now, knowing we can obtain the \mathbf{b} gradients in the same way

What do you notice?

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-1)}}= \frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{W}^{(\mathscr{L}-1)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-2)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{W}^{(\mathscr{L}-2)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-3)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{W}^{\mathscr{L}-3)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-4)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{H}^{(\mathscr{L}-4)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-4)}}{\partial \mathbf{W}^{\mathscr{L}-4)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-5)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{H}^{(\mathscr{L}-4)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-4)}}{\partial \mathbf{H}^{(\mathscr{L}-5)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-5)}}{\partial \mathbf{W}^{\mathscr{L}-5)}}
\end{aligned}
$$

The same terms keep cropping up

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-1)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{W}^{(\mathscr{L}-1)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-2)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{W}^{(\mathscr{L}-2)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-3)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{W}^{(\mathscr{L}-3)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-4)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{H}^{(\mathscr{L}-4)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-4)}}{\partial \mathbf{W}^{(\mathscr{L}-4)}} \\
& \frac{\partial L}{\partial \mathbf{W}^{(\mathscr{L}-5)}}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-1)}}{\partial \mathbf{H}^{(\mathscr{L}-2)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-2)}}{\partial \mathbf{H}^{(\mathscr{L}-3)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-3)}}{\partial \mathbf{H}^{(\mathscr{L}-4)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-4)}}{\partial \mathbf{H}^{(\mathscr{L}-5)}} \frac{\partial \mathbf{H}^{(\mathscr{L}-5)}}{\partial \mathbf{W}^{(\mathscr{L}-5)}} \\
& \text { - We can write } \frac{\partial L}{\partial \mathbf{W}^{(l)}}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{W}^{(l)}} \text { where } \mathbf{G}^{(l)}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}} \prod_{m=1}^{\mathscr{L}-l-1} \frac{\partial \mathbf{H}^{(\mathscr{L}-m)}}{\partial \mathbf{H}^{(\mathscr{L}-m-1)}}
\end{aligned}
$$

- We can iteratively compute $\mathbf{G}^{(l-1)}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{H}^{(l-1)}}$ so we don't have to repeatedly calculate the same terms

The backpropagation algorithm

- Goal: Obtain gradients $\nabla_{\boldsymbol{\theta}} L=\left\{\frac{\partial L}{\partial \mathbf{W}^{(l)}}, \frac{\partial L}{\partial \mathbf{b}^{(l)}}\right\}_{l=0}^{\mathscr{L}-1}$
- Compute $\mathbf{G}^{(\mathscr{L}-1)}=\frac{\partial L}{\partial \mathbf{H}^{(\mathscr{L}-1)}}$
- For l in $\mathscr{L}-1, \mathscr{L}-2, \ldots, 1,0$:

1. Compute $\frac{\partial L}{\partial \mathbf{W}^{(l)}}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{W}^{(l)}}$ and $\frac{\partial L}{\partial \mathbf{b}^{(l)}}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{b}^{(l)}}$
2. Compute $\mathbf{G}^{(l-1)}=\mathbf{G}^{(l)} \frac{\partial \mathbf{H}^{(l)}}{\partial \mathbf{H}^{(l-1)}}$

Backpropagation is efficient

- Going forward, you have to keep all the activations in memory
- Going backward, you can throw stuff away after it's used to update $\mathbf{G}^{(l)}$

SGD for neural network training

Storing lots of activations for a whole dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$ can be expensive. Because of this SGD is typically used for DNN training. The procedure is:

- Initialise DNN weights at random e.g. from a normal distribution
- For e in range(E):
- Split dataset into equal sized mini-batches $\left\{\mathbf{X}^{(b)}, \mathbf{y}^{(b)}\right\}_{b=0}^{B-1}$ at random
- For b in range(B):

1. Compute $\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}, \mathbf{X}^{(b)}, \mathbf{y}^{(b)}\right)$ using backpropagation
2. Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}, \mathbf{X}^{(b)}, \mathbf{y}^{(b)}\right)$

Each outer loop across the whole dataset is known as an epoch

SGD + momentum

- As the loss functions for DNNs are non-convex it is possible to get stuck in an undesirable local minimum as the gradient is zero
- In SGD + momentum we update parameters using the current gradient and an exponential moving average of previous gradients
- This makes it harder to get stuck, and tends to accelerate training
- At time step t:

1. Compute $\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{t=i}, \mathbf{X}^{(b)}, \mathbf{y}^{(b)}\right)$ using backpropagation
2. Update velocity $v_{t=i+1}=\mu v_{t=i}+\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{t=i}, \mathbf{X}^{(b)}, \mathbf{y}^{(b)}\right)$
3. Update $\boldsymbol{\theta}_{t=i+1}=\boldsymbol{\theta}_{t=i}-\alpha v_{t=i+1}$

Other optimisers are available

- e.g. the Adam optimiser (pictured right)
- Almost all take the gradients from backprop and do something with them
- You don't need to know about any optimisers other than GD and SGD (+ momentum) for this course

- See https://pytorch.org/docs/stable/optim.html\#algorithms if you're curious how others function

DNNs can overfit

- DNNs can represent lots of functions. They are high capacity models
- They are very susceptible to overfitting!
- Remember, we care about a model's ability to generalise to unseen data
- Regularisation is very important in DNNs!

Early stopping

- Fitting to the test set is not allowed
- We can however look at the validation set throughout training as a proxy
- The model starts to overfit once validation loss stops decreasing with train loss
- We can stop training at this point

This looks very similar to the last figure!
Over training models tend to underfit and then overfit to the training data

Weight decay

- Models that overfit tend to have large weights
- To mitigate this, we multiply all the weights by $1-\lambda$ whenever we perform an update step in e.g. SGD
- λ is the amount of weight decay as is usually very small e.g. 10^{-4}
- This is basically equivalent to having L2 regularisation in the loss function

Ensembles as regularisers

- Recall that decision trees tended to overfit
- We mitigated this by forming an ensemble in the form of a random forest
- Ensemble learning is a form of regularisation
- But DNN training is costly so we don't want to train lots of them

Dropout

- At each iteration of training, each hidden neuron has a chance (usually 50\%) of being switched off for that forward and backward pass
- We can view this as cheaply training an ensemble of subnetworks

Summary

- We have considered learning our features instead of using a pre-existing map
- We have seen how the structure of a DNN facilitates feature learning
- We have looked at the MLP architecture and worked through some examples
- We have found out how to train an MLP using backpropagation + SGD
- We looked at different ways to regularise DNNs

